




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ORIGINALARTICLEOnthefiniteelementmodellingofhighspeedhardturningA.G.Mamalis&J.Kundrk&A.Markopoulos&D.E.ManolakosReceived:7November2006/Accepted:25May2007/Publishedonline:14August2007#Springer-VerlagLondonLimited2007AbstractTheresultsreportedinthispaperpertaintothesimulationofhighspeedhardturningwhenusingthefiniteelementmethod.Inrecentyearshighspeedhardturninghasemergedasaveryadvantageousmachiningprocessforcuttinghardenedsteels.Amongtheadvantagesofthismodernturningoperationarefinalproductquality,reducedmachiningtime,lowercostandenvironmentallyfriendlycharacteristics.Forthefiniteelementmodellingacommer-cialprogramme,namelytheThirdWaveSystemsAdvant-Edge,wasused.Thisprogrammeisspeciallydesignedforsimulatingcuttingoperations,offeringtotheusermanydesigningandanalysistools.Inthepresentanalysisorthogonalcuttingmodelsareproposed,takingseveralprocessingparametersintoaccount;themodelsarevalidat-edwithexperimentalresultsfromtherelevantliteratureanddiscussed.Additionally,obliquecuttingmodelsofhighspeedhardturningareconstructedanddiscussed.Fromthereportedresultsusefulconclusionsmaybedrawnanditcanbestatedthattheproposedmodelscanbeusedforindustrialapplication.KeywordsMachining.Finiteelementmethod.Hardturning1IntroductionHardturning,amachiningoperationusedfortheprocess-ingofhardmaterialssuchashardenedsteels,hasbeenbroughtintotheforefrontofmodernmetalcuttingoperationswiththeincreasingdemandformanufacturinghighqualitycomponents,e.g.,gears,shafts,bearings,diesandtools,fromthesekindsofmaterials.Cuttingtoolsemployedinhardturningaremadeofspecializedtoolmaterials,suchascubicboronnitrite(CBN),thatareabletoovercometheproblemsexperiencedduringtheprocess1.Thesecuttingtoolsareidealformachiningiron-basedmaterialsattheseverecuttingconditionsassociatedwithhardturning;theypossessexquisiteproperties,evenatelevatedtemperatures,allowingfortheirapplicationathighcuttingspeedsandwithouttheuseofanycuttingfluids2;bydrycuttingnotonlyenvironmentally-friendlycharacter-isticsareattributedtotheprocess,butalsocostreductioncanbeattainedbyomittingbuyinganddisposalcostsofthecuttingfluids35.Inadditionthecombinationofhardturningandhighspeedmachiningisprovedtobeveryadvantageoussinceagreatreductioninprocessingtimecanbeachieved1.Hardturningisveryadvantageousforawidespectrumofapplicationsandisalsoconsideredasanalternativeforavarietyofprocesses,sincethesingle-stepsuperfinishhardturningcanreplacetheabrasiveprocesses,traditionallyusedasfinishingoperations,ornon-traditionalprocesses,suchaselectricaldischargemachining(EDM),inmachin-inghardparts,offeringaccuracyequaltoorbetterthanthatprovidedsofar,flexibilityandconsiderablemachiningtimeandcostreduction47.Note,however,thathardturninghasnotbeenintroducedintomodernindustryasmuchasitshouldbe,mainlybecauseofphenomenasuchasrapidtoolwearorcrackingIntJAdvManufTechnol(2008)38:441446DOI10.1007/s00170-007-1114-9A.G.Mamalis(*):A.Markopoulos:D.E.ManolakosManufacturingTechnologyDivision,NationalTechnicalUniversityofAthens,Athens,Greecee-mail:mamaliscentral.ntua.grJ.KundrkDepartmentofProductionEngineering,UniversityofMiskolc,Miskolc,Hungaryandchippingofthecuttingedgeduetoextremepressureandtemperatureimposedonthecuttingtool,whichleadtopoormachiningresults8.Furthermore,asanovelmachiningprocess,itneedstobefurtherstudiedsothatitmaybeoptimized.Mostresearchworkislimitedtoexperimentalresults,but,also,themodellingofhardturningcanprovideusefuldatatobetterunderstandingtheprocess.Numericalmodellingand,especially,thefiniteelementmethod(FEM)havebeenwidelyusedinthepastfortheanalysisandthepredictionofthecuttingperfor-manceinmachiningoperations.FEMhasbeenaverypowerfultoolinthecuttingtechnologyandcanbeappliedtohighspeedhardturningaswell.InthepresentpaperFEMisemployedinordertosimulatedryhighspeedhardturning,investigatingtheinfluenceofthecuttingspeedontheperformanceofthecuttingoperationandpredictingthecrucialprocessingparameters,someofthembeingsometimesverydifficulttobemeasuredorcalculatedotherwise,e.g.,temperaturefieldswithintheworkpieceandthetoolduringtheprocess.However,hardturningisarathercomplexprocess,withcuttingconditionsthataredifferentfromconventionalturningand,thereforeitisdesirabletotakeintoaccountsomespecialcharacteristics;forthispurpose,theFEMprogrammeThirdWaveAdvantEdge,whichisspeciallydesignedtosimulatecuttingoperations,isused.Forthesimulationofhardturningbothanorthogonalandanobliquecuttingmodelareproposed.2FiniteelementmodellingSimulationsofvariousmachiningoperationsusingthefiniteelementmethodhavebeenreportedoverthelastthreedecades;inReferences9,10acollectionofsuchpaperscanbefound.Thefirstmodelsthatappearedinthe1970susedtheEulerianformulationformodellingorthogonalcutting.Inthisapproachthefiniteelementmeshisspatiallyfixedandthematerialflowsthroughit,inordertosimulatethechipformation.Thecomputationaltimeinsuchmodelsisreduced,duetothefewelementsrequiredformodellingtheworkpieceandthechip,anditismainlyusedforsimulatingthesteadystateconditionofthecuttingprocess.Theelementsdonotundergoseveredistortion,sincethemeshisaprioriknown,butthisformulationrequirescomplexprogramming.Furthermore,experimentaldatamustbeonhandpriortotheconstructionofthemodelinordertodeterminethechipgeometry.Althoughthisformulationisstillutilizedbysomeresearchers,theupdatedLagrangianformulationhasbeenproposedandismorewidelyusedtoday.Inthisapproach,theelementsareattachedtothematerialandtheunde-formedtoolisadvancedtowardstheworkpiece.Fortheformationofthechip,achipseparationcriterioninfrontofthetooledgeisapplied.Therearemanycriteriaproposedsofarwhichcanbegeometricorphysicalandmayinvolveforexampleacriticaldistancebetweenthetoolandtheworkpiece;whenthetoolreachesthiscriticaldistancefromtheworkpiecetheelementsaheadofthetooledgearedividedandthusthechipisformed.Otherseparationcriteriapertaintocriticalvaluesofe.g.,stressorstraininordertoinitiatethechipformationandevencrackpropagationcriteriahavebeenreportedforthisprocedure.Adisadvantageofthismethodisconnectedtothelargemeshdeformationobservedduringthesimulation;duetotheattachmentofthemeshonthework-piecematerial,themeshisdistortedbecauseoftheplasticdeformationinthecuttingzone.Inordertoovercomethisdisadvantagecontinuousremeshingandadaptivemeshingareusuallyapplied,increasingconsiderablytherequiredcalcula-tiontime.Nevertheless,theadvancesincomputershavemadeitpossibletoreducethetimeneededforsuchananalysistoacceptablelevels.NotethatanarbitraryLagrangian-Eulerianformulation(ALE)hasalsobeenproposedwiththeaimofcombiningtheadvantagesofthetwomethods,butitisnotaswidelyused.Mostofthemodellingworkpublishedsofarpertainsto2Dmodelsoforthogonalcutting,while3Dmodelsareratherrareintherelevantliterature.Thatismainlybecause,eventhough3Dcuttingismorerealistic,sincecuttingis3Dinnature,itrequiresamuchmorecomplexconsiderationofworkpieceandcuttingtoolgeometry,contactpropertiesand,ofcourseadditionalcomputationaltime.Inparticular,theworkdedicatedtohardturningisevenmorelimited1115.ThemodelsprovidedbelowaredevelopedemployingtheThirdWaveAdvantEdgesoftware,whichintegratesspecialfeaturesappropriateformachiningsimulation.Theprogrammemenusaredesignedinsuchawaythattheyallowtheusertominimizethemodelpreparationtime.Furthermore,itincludesawidedatabaseofworkpieceandtoolmaterialscommonlyusedincuttingoperations,offeringalltherequireddataforeffectivematerialmodelling.TheAdvantEdgecodeisaLagrangian,explicit,dynamiccode,whichcanperformcoupledthermo-mechanicaltransientanalysis.TheprogramappliesadaptivemeshingandFig.1Orthogonalcuttingmodelschematicdiagram442IntJAdvManufTechnol(2008)38:441446continuousremeshingforchipandworkpiece,allowingforaccurateresults.Forananalyticaldiscussiononthenumericaltechniquesusedintheprogrammeandacompre-hensivepresentationofitsfunctionsseeReference16.3Resultsanddiscussion3.1OrthogonalcuttingmodelsTheorthogonalcuttingschematicdiagramusedintheprogrammeisshowninFig.1.Thedepthofcutisperpen-diculartotheplaneshowninthefigureandintheplanestraincase,itisconsideredtobelargeincomparisontothefeed.InthepresentanalysistheworkpiecematerialistheAISIH-13hotworktoolsteelanditslengthistakenequaltol=3mm.ThetoolmaterialisCBNandthemodellingoftool-chipinterfacefrictionisbasedonCoulombsfrictionlaw,withfrictioncoefficientsetconstantatthevalue=0.5.Acuttingtool,with5rakeangle,5clearanceangleand0.02mmcuttingedgeradius,isusedfortheanalysis.Furthermore,thefeedistakenequaltof=0.05mm/rev,whilethreedifferentcuttingspeeds,namelyvc=200,250and300m/min,areconsidered.InFig.2(a)and(b)theinitialmeshandatypicalmeshcreatedafterthetoolhascuthalfoftheworkpiecelength(l=1.5mmfortimet=3104s),forvc=300m/minrespectively,areshown.Inthisfigure,thecontinuousmeshingandtheadaptiveremeshingprocedurescanbeobserved.Note,that,inFig.2(a)themeshisdensernearthetooltip,wheredeformationisabouttotakeplace,whileinFig.2(b)newelementsarecreatedintheshearzonewherethestrainrateisexpectedtobehigh.Note,also,thatthemeshdensityinthechip,especiallyinitsinnerandoutersurfaces,isalsohighbecauseofthedeformationofthematerialinthisarea;finermeshcanfollowthecurveofthecurlingmaterialmorecloselyand,furthermore,providemoreaccurateresults.Forthevalidationoftheproposedhardturningmodelexperimentalresultsfromtherelevantliteratureareused,wherethehighspeedturningofhardsteeltubes(55HRC),inordertoachieveorthogonalcuttingconditions,isperformed17.InFig.3theexperimentalvaluesofthethrustforceFtandthecuttingforceFcarecomparedtotheonespredictedfromthemodels.Fromthisfigureitcanbeseenthattheexperimentalandthenumericalresultsareinaverygoodagreementand,generally,theyfollowthesametrends;thrustforce,whichisthelargestforcecomponent,decreasesforincreasingcuttingspeed,whilecuttingforceincreasesslightly.Nevertheless,inalmostallthecases,theFig.2(a)Initialmeshand(b)meshatl=1.5mmFig.3NumericalandexperimentalresultsofthrustandcuttingforcesforthreedifferentcuttingspeedsIntJAdvManufTechnol(2008)38:441446443numericalvaluesseemtooverestimatetheexperimentaloneswhilethediscrepanciesarelargerforhighercuttingspeeds;thismaybeattributedtothelargestrain-ratesdevelopedduringtheprocessthataltersthematerialbehaviourinsuchawaythattheycannotbetakenintoaccountbythemodelortoinadequatefrictionmodelling,whichmeansthatamoreadvancedfrictiontheoryneedstobemodelled.Note,also,thatitispossible,besidesthecuttingandthrustforces,toextractfromtheproposedmodelpredic-tionsforvaluesthatitwouldbeverylaboriousorevenimpossibletoobtainotherwise.Examplesofsuchcasesare:thetemperaturedistributionintheworkpieceandtoolintheformofisothermalbandsandthevonMisesstressesdevelopedduringcutting.InFig.4(a)and(b)thetemperaturefieldsandthevonMisesstresses,respectively,forcuttingwithvc=300m/min,areshown.Thesefiguresdemonstratethemodelatastepoftheanalysis,specificallyforlengthofcutl=1.5mm,wherecuttingiswellintothesteady-stateregion.Theformoftheresultsissimilarforallconditions,exceptofcoursethemagnitude.Fromtheresultsobtained,itmaybeconcludedthatthemaximumtemperatureincreaseswithincreasingcuttingspeed,being620C,690Cand730Cforthethreedifferentcuttingspeedsconsidered.Thismayexplainthatthethrustforcedecreasesforhighercuttingspeed,sincesofteningofth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中小学2025年《秋季军训》工作实施方案 (3份)-53
- 2026年高考语文一轮总复习教材文言文梳理
- 2026届人教版高考英语一轮复习单元晨背+清单
- 2025年生态环保管理考核试题
- 2025中考数学押题预测卷(江西卷)含答案解析
- 【期末专题】哈尔滨市师范大学附属中学2020-2021学年高一上学期期末考试英语试题(解析版)
- 2026高考物理一轮复习:原子核 专项训练【含答案】
- 2025年译林版八年级英语上册Unit4综合检测试卷及答案
- 2025年人教版七年级英语下册期末复习之完形填空25篇(Units1-8单元话题)【答案+解析】
- 办公室标准化培训课件
- 2025四川泸州临港物业管理有限公司招聘16人笔试参考题库附带答案详解版
- DB11∕T 2342-2024 城市轨道交通牵引供电架空刚性接触网技术规范
- (2025)入党积极分子考试试题库(附参考答案)
- 前庭大腺囊肿护理
- 锂电化成老化工艺培训
- 2025秋装流行趋势培训资料
- 劳氏haccp培训课件
- 手机钉钉培训课件
- 口腔器械销售培训课件
- 2025至2030中国根皮素行业发展趋势分析与未来投资战略咨询研究报告
- 【国际能源署】全球电动汽车2025展望
评论
0/150
提交评论