




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Computer-AidedCivilandInfrastructureEngineering23(2008)448464INDUSTRIALAPPLICATIONDynamicResponseofaRolloverProtectiveStructureDavidP.Thambiratnam&BrianJ.ClarkSchoolofUrbanDevelopment,FacultyofBuiltEnvironment&Engineering,QueenslandUniversityofTechnology,Brisbane,Australia&NimalJ.PereraSchoolofUrbanDevelopment,FacultyofBuiltEnvironment&Engineering,QueenslandUniversityofTechnology,Brisbane,AustraliaRobertBirdGroup,Brisbane,AustraliaAbstract:RollOverProtectiveStructures(ROPS)aresafetydevicesfittedtoheavyvehiclestoprovideprotectiontotheoperatorduringanaccidentalrollover.Atpresent,ROPSdesignstandardsrequirefull-scaledestructivetest-ingthatcanbeexpensive,timeconsuming,andunsuitableforsmallcompanies.Moreeconomicalanalyticalmeth-odsarenotpermittedduetoalackofunderstandingofpostyieldbehaviorandtheenergyabsorptioncapacityofROPS.Toaddressthis,acomprehensiveresearchprojectwasundertakentoinvestigateROPSbehaviorusingan-alyticaltechniquessupportedbyexperiments.Thisarti-clepresentsthedynamicimpactanalysisofabulldozerROPSusingcalibratedfiniteelementmodels.Resultsindi-catethat(1)ROPSpostshavesignificantinfluenceontheenergy-absorbingcapacity,(2)dynamicamplificationsinenergycouldbeupto25%,(3)stifferROPScausehighpeakdecelerationsthatmaybedetrimentaltotheoperator,and(4)analyticaltechniquesmaybeusedforevaluatingROPSperformance.1INTRODUCTIONHeavyvehiclesthatareusedintherural,mining,andconstructionindustriesaresusceptibletorolloversasTowhomcorrespondenceshouldbeaddressed.E-mail:.au.theyhaveahighcenterofgravityandcommonlyop-erateonslopinganduneventerrain.Asteelmoment-resistingframewitheithertwoorfourpostsisusuallyattachedtothesevehiclesabovetheoperatorscabinforprotectionduringrollovers.ThissafetydeviceiscalledaRolloverProtectiveStructure(ROPS)anditsroleistoabsorbsomeofthekineticenergy(KE)oftherollover,whilemaintainingasurvivalzonefortheoperator.ThedesignandanalysisofROPSiscomplexandrequiresdualcriteriaofadequateflexibilitytoabsorbenergyandadequatestiffnesstomaintainasurvivalzonearoundtheoperator.EvaluationtechniquesusedinthecurrentAustralianstandardforearthmovingmachineryprotectivestruc-turesAS22941997aresimplifiedandinvolvefull-scaledestructivetestingofROPSsubjectedtostaticloadsalongtheirlateral,vertical,andlongitudinalaxes.Thestandardisperformancebased,withcertainforceandenergyabsorptioncriteriathatarederivedfromempir-icalformulaerelatedtothetypeofmachineandoper-atingmass.Deflectionrestrictionsarealsoemployedtoenableasurvivalspaceknownasthedynamiclimitingvolume(DLV)tobemaintainedforthevehicleoperator.Thesesimplifiedprovisionsprovidedesignguidelinesthatwillsubstantiallyimprovetheoperatorschancesofsurvivalduringanaccidentalrollover.Thisformofcerti-ficationcanbetimeconsumingandextremelyexpensiveC2008Computer-AidedCivilandInfrastructureEngineering.PublishedbyBlackwellPublishing,350MainStreet,Malden,MA02148,USA,and9600GarsingtonRoad,OxfordOX42DQ,UK.Dynamicresponseofarolloverprotectivestructure449asestablishingtheforceandenergycriteriacaninvolvelargeloadsthatmaythereforerequiretheuseofaspe-cializedtestingfacility.CertificationofROPSbymoreeconomicalanalyti-calmodelingtechniquesiscurrentlynotpermittedbyROPSstandardsforearthmovingmachinerybothinAustraliaandinternationally.Reasonsfortheexclusionareattributedtoalackofknowledgeandresearchin-formationonthebehaviorofthesestructuresinthepostyieldregionandtheirenergy-absorptioncapacity.Pre-liminaryresearchhasshownpromisefortheuseofan-alyticaltechniquestomodelthenonlinearresponseofROPS.Theseanalyticalmethodswereverysimplifiedandinvolvedtheuseofelasto-plasticbeamelementstosimulatethebehaviorofROPSsubjectedtoastaticlateralload.Inrecentyears,substantialadvanceshavebeenmadeinbothcomputationalpowerandtheimple-mentationofadvancedelementtypesinFiniteElement(FE)techniquesthatcanaccuratelymodelandpredictthenonlinearresponseofstructures,particularlyinthepostyieldregion.ResearchcarriedoutonROPSbehav-iorusinganalyticalandexperimentaltechniquesincludethoseofClarketal.(2006a,b),KimandReid(2001),Tomasetal.(1997),Swan(1988),andHuckleretal.(1985).AcomprehensiveresearchprojectwasundertakenattheQueenslandUniversityofTechnologytoinves-tigateROPSbehaviorusingcomputersimulationssup-portedbyexperimentsto(1)enhanceourunderstandingofROPSbehavior,(2)improveenergyabsorptionandsafety,and(3)generateresearchinformationtofacili-tatethedevelopmentofanalyticaltechniquesfordesignandevaluationthatmaylessentheneedfordestructivefull-scaletesting(Clark,2006a).ThisarticletreatsthedynamicresponseoftheROPSmodelforaK275bulldozer,usingcalibratedFEmodels.TheexperimentaltestingandcalibrationofthecomputemodelofthisparticularROPSmodelarereportedelse-where(Clark,2006a,b).Thedynamicimpactloadsarecharacteristicofthosethatareexperiencedduringthesidewardsrolloverofavehicleonafirmslope.Asim-plifiedmethodbasedonaconservationofangularmo-mentumapproachreportedbyWatson(1967)isusedtoestimatethedynamicimpactparametersfortheROPSduringasidewardsoverturn.TheexplicitFEcodeLS-Dynav970wasusedtoconductthenecessarydynamicimpactmodelingforrolloverimpactsonfirmslopeswithinclinationsof15,30,and45.Theinfluenceofcon-trollingvariablessuchasROPSstiffness,impactveloc-ity,anddurationandrollslopeangleonthedynamicresponseoftheROPSwasstudied.Theresultsarecom-paredwiththosefrompreviousstaticanalysistoestab-lishtheeffectofpossibledynamicamplificationsandtheadequacyofcurrentstandardprovisions.1.1DynamicfiniteelementanalysisRolloversimulationusingFEanalysishasreceivedlit-tleattentionfromresearchers.Chouetal.(1998)high-lightedthatthemajordifficultyassociatedwithusingFEforrolloveranalysiswasthelargesimulationtimerequiredtocapturetheeventaccurately.Indirectparal-leltothis,Klose(1969)alsoemphasizedthattherolloverprocesswasextremelydifficulttomodelasitinvolvedthecomplexinteractionofnumerousparametersthatinfluencedthebehavioroftherollingvehicle.Intheopenliterature,theFEmodelingofrolloverprotectivestructuresunderdynamicloadinghasbeenlimitedtore-searchperformedbyTomasetal.(1997)andHarrisetal.(2000).TheworkperformedbyHarris(2000)examinedtherearwardrolloverofatractorwhereasTomassre-searchusedtheprogramMADYMOtostudytheeffectofROPSstiffnessandoccupantrestraintduringtheside-wardsrolloverofanearthmovingmachine.AlthoughthemodelingtechniquesemployedbyeachoftheseauthorshaveassistedwithassessingtheperformanceofROPSundersimulateddynamicimpactloads,littlecompari-sonhasbeenmadewithreferencetotheadequacyofthestaticloadingproceduresadoptedincurrentROPSstan-dardsandthepossibledynamicamplificationsthatmaytakeplaceduringsuchloadingconditions.WiththeseviewsinmindthesimplifiedprocedureproposedbyWat-son(1967)isusedasabasisforadynamicimpactstudytoinvestigatetheinfluenceofcriticalparametersthatcon-troltheresponsebehaviorofROPSsubjectedtosuchloadingconditions.2ROPSFORK275BULLDOZERTheK275bulldozerisacrawlertypedozerwithagrossvehicleweightofapproximately50tonscommonlyusedintheconstructionandminingindustriesforearthmov-ingpurposes.Rolloverprotectionfortheoccupantisaf-fordedthroughatwopostrollbartypeROPS,whichisshowninFigure1.ThisROPSisprimarilyafixedbaseportalframe,con-sistingoftwopostsandabeam,rigidlyconnectedtothechassisofthevehicle.InadditiontotheROPS,anaddi-tionalroofcanopysectionknownastheFallingObjectProtectiveStructure(FOPS),isincorporatedtoprovideprotectiontotheoperatorunderfallingobjects.Inthisstudy,theFOPS,whichisaseparatedetachablestruc-ture,wasomitted.Theoverallgeometryofthefull-scaleK275ROPSmodelwasestablishedfromsitemeasure-mentstakenatthemanufacturersstorageyard.Appro-priateRHS/SHSmembersizeswereselectedsothattheROPSwouldpossesssufficientstrengthandenergyab-sorptioncharacteristicsthatwouldenableittosuccess-fullypasstherequirementsoftheAustralianStandard.450Thambiratnam,Clark&PereraFig.1.K275bulldozerwithROPS.2.1Half-scaleROPSmodelPreviousresearchbySrivastavaetal.(1978)hasshownthatprinciplesofsimilitudemodelingcouldbesuccess-fullyappliedtoROPStestingtechniques,andcouldleadtolarge-scaleeconomicsavings.BasedontheresearchfindingsoftheseauthorstheprinciplesofsimilitudewereappliedtotheK275bulldozerROPStolessenfabrica-tioncostsandreducethemagnitudesofthetestloadstobeappliedtotheROPS.Reductioninthemagnitudesoftheloadswasessentialasafull-scaletestofROPSforavehiclesuchasthiswasextremelylargeandwouldre-quiretheuseofanextensivelaboratorytestingfacility.Ascalingfactor(forsize)wasthenselectedbetweenthemodelandprototypethatgaverisetothescalingfactorsof1/8forenergyabsorbedunderlateralload,1/4forloads,and1/2fordeflections.Ahalf-scalemodeloftheK275ROPSwithlength1,000mm,height900mm,andsectionproperties125755mmforthepostsand1251255mmforthebeam,wasdesignedandfabricatedandsubjectedtotheloadingandenergyre-quirementsofAS22941997.ThemembertypesusedfortheROPSconsistedof350gradeRHSwithfullpenetrationbutt-weldedmoment-resistingconnections.Thehalf-scaleK275ROPSmodelwasexperimentallytestedundertherequiredlateral,vertical,andlongitu-dinalloads(Clark,2006a).Theloadandenergymagni-tudesestablishedfromAS2294.21997weremodifiedtotakeintoaccountthesimilituderelationshipsestablishedforthismodel.Strainanddeflectionmeasurementswererecordedforeachloadingsequence.TheexperimentaltestingwasfollowedbyFEanalysisofthehalf-scaleROPSmodelunderthesameloads,us-ingtheprogramABAQUSstandardv6.3.ScalinglawsfromthesimilitudestudyalongwiththeprogramMSCPatranwereusedtodevelopthenecessarygeometryfortheFEmodel.Figures2and3showtheexperimentaltestingoftheROPSmodelunderlateralloadandtheFEmodelofFig.2.LateralloadtestingofK275ROPS.thesameROPS,respectively.Therectangularportion(inlightershade)atthetopright-handpostintheFEmodelshowstherigidbodyusedtoapplythedynamicimpactloadingdescribedlateroninthearticle.Thelat-eralloaddeflectionplotsobtainedexperimentallyandfromtheFEanalysisshowninFigure4demonstrateexcellentagreementbetweenthetwosetsofresults.ThevariationofthestresswithloadatthebaseoftheROPSpost(acriticalregion),alsoshowedexcellentagreementbetweentheexperimentalandanalyticalre-sults(Clark,2006a).ThiscalibratedFEROPSmodelwasusedforthedynamicanalysisunderlateralimpactloads.Fig.3.FiniteelementmodelofK275ROPS.Dynamicresponseofarolloverprotectivestructure451Fig.4.Lateralloaddeflectionresponsefromexperiment(LVDT1)a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省部分市2022-2023学年高一下学期期末英语试卷汇编:应用文写作
- 2025年宁夏交安考试试题题库及答案
- 2025年阅读二级考试试题及答案
- 贵州大学体操考试题及答案
- 广东省揭阳市2022-2023学年普通高中高三上学期教学质量测试英语试卷
- 农村民间借款合同范本
- 农业主播聘用合同范本
- 公共维修基金合同范本
- 供方质量销售合同协议
- 火山泥SPA放松中心创新创业项目商业计划书
- GB/T 41782.4-2024物联网系统互操作性第4部分:语法互操作性
- 托班自主活动教案
- 视频新媒体制作服务方案
- 中华民族共同体概论课件专家版2第二讲 树立正确的中华民族历史观
- 宫腔镜检查的个案护理
- 大学生创新创业基础(创新创业课程)全套教学课件
- 初中英语短语大全to-do-结构
- 全套ISO45001职业健康安全管理体系文件(手册及程序文件)
- 敦煌文献研究与敦煌学
- 各种膏药的配方
- 笛卡尔环线性化技术的基本原理
评论
0/150
提交评论