2012年全国各地中考数学压轴题汇编二(含详细答案)_第1页
2012年全国各地中考数学压轴题汇编二(含详细答案)_第2页
2012年全国各地中考数学压轴题汇编二(含详细答案)_第3页
2012年全国各地中考数学压轴题汇编二(含详细答案)_第4页
2012年全国各地中考数学压轴题汇编二(含详细答案)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉为明实验学校2012年全国各地中考数学压轴题汇编二(含详细答案)【112012成都】28本小题满分L2分如图,在平面直角坐标系XOY中,一次函数54YXM为常数的图象与X轴交于点A3,0,与Y轴交于点C以直线X1为对称轴的抛物线2YAXBCABC,为常数,且A0经过A,C两点,并与X轴的正半轴交于点B(1)求M的值及抛物线的函数表达式;(2)设E是Y轴右侧抛物线上一点,过点E作直线AC的平行线交X轴于点F是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使ACP的周长取得最小值的点,过点P任意作一条与Y轴不平行的直线交抛物线于1MXY,2XY,两点,试探究21M是否为定值,并写出探究过程考点二次函数综合题。解答解(1)经过点(3,0),0M,解得M,直线解析式为,C(0,)抛物线YAX2BXC对称轴为X1,且与X轴交于A(3,0),另一交点为B(5,0),设抛物线解析式为YA(X3)(X5),抛物线经过C(0,),A3(5),解得A,抛物线解析式为YX2X;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则ACEF且ACEF如答图1,(I)当点E在点E位置时,过点E作EGX轴于点G,ACEF,CAOEFG,又,CAOEFG,EGCO,即YE,XE2XE,解得XE2(XE0与C点重合,舍去),E(2,),SACEF;(II)当点E在点E位置时,过点E作EGX轴于点G,同理可求得E(1,),SACEF(3)要使ACP的周长最小,只需APCP最小即可如答图2,连接BC交X1于P点,因为点A、B关于X1对称,根据轴对称性质以及两点之间线段最短,可知此时APCP最小(APCP最小值为线段BC的长度)B(5,0),C(0,),直线BC解析式为YX,XP1,YP3,即P(1,3)令经过点P(1,3)的直线为YKX3K,YKX3K,YX2X,联立化简得X2(4K2)X4K30,X1X224K,X1X24K3Y1KX13K,Y2KX23K,Y1Y2K(X1X2)根据两点间距离公式得到M1M2M1M24(1K2)又M1P;同理M2PM1PM2P(1K2)(1K2)(1K2)4(1K2)M1PM2PM1M2,1为定值【122012聊城】25某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量Y(万件)与销售单价X(元)之间的关系可以近似地看作一次函数Y2X100(利润售价制造成本)(1)写出每月的利润Z(万元)与销售单价X(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得3502万元的利润当销售单价为多少元时,厂商每月能获得最大利润最大利润是多少(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元考点二次函数的应用;一次函数的应用。分析(1)根据每月的利润Z(X18)Y,再把Y2X100代入即可求出Z与X之间的函数解析式,(2)把Z350代入Z2X2136X1800,解这个方程即可,将Z2X2136X1800配方,得Z2(X34)2512,即可求出当销售单价为多少元时,厂商每月能获得最大利润,最大利润是多少(3)结合(2)及函数Z2X2136X1800的图象即可求出当25X43时Z350,再根据限价32元,得出25X32,最后根据一次函数Y2X100中Y随X的增大而减小,即可得出当X32时,每月制造成本最低,最低成本是18(232100)解答解(1)Z(X18)Y(X18)(2X100)2X2136X1800,Z与X之间的函数解析式为Z2X2136X1800;(2)由Z350,得3502X2136X1800,解这个方程得X125,X243所以,销售单价定为25元或43元,将Z2X2136X1800配方,得Z2(X34)2512,因此,当销售单价为34元时,每月能获得最大利润,最大利润是512万元;(3)结合(2)及函数Z2X2136X1800的图象(如图所示)可知,当25X43时Z350,又由限价32元,得25X32,根据一次函数的性质,得Y2X100中Y随X的增大而减小,当X32时,每月制造成本最低最低成本是18(232100)648(万元),因此,所求每月最低制造成本为648万元点评本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式,综合利用二次函数和一次函数的性质解决实际问题【132012安徽】23如图,排球运动员站在点O处练习发球,将球从O点正上方2M的A处发出,把球看成点,其运行的高度Y(M)与运行的水平距离XM满足关系式YAX62H已知球网与O点的水平距离为9M,高度为243M,球场的边界距O点的水平距离为18M。(1)当H26时,求Y与X的关系式(不要求写出自变量X的取值范围)(2)当H26时,球能否越过球网球会不会出界请说明理由;(3)若球一定能越过球网,又不出边界,求H的取值范围。23解析(1)根据函数图象上面的点的坐标应该满足函数解析式,把X0,Y2,及H26代入到YAX62H中即可求函数解析式;(2)根据函数解析式确定函数图象上点的坐标,并解决时间问题;(3)先把X0,Y2,代入到YAX62H中求出362HA;然后分别表示出X9,X18时,Y的值应满足的条件,解得即可解(1)把X0,Y2,及H26代入到YAX62H即2A06226,601AY60X6226(2)当H26时,YX6226X9时,Y196226245243第23题图AOXY球球18962球能越过网X18时,Y601186226020球会过界(3)X0,Y2,代入到YAX62H得36HA;X9时,Y62H962H4243X18时,Y31862HH80由得H8点评本题是二次函数问题,利用函数图象上点的坐标确定函数解析式,然后根据函数性质来结合实际问题求解【142012乐山】26如图,在平面直角坐标系中,点A的坐标为(M,M),点B的坐标为(N,N),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交Y轴于点C已知实数M、N(MN)分别是方程X22X30的两根(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在Y轴右侧),连接OD、BD当OPC为等腰三角形时,求点P的坐标;求BOD面积的最大值,并写出此时点D的坐标考点二次函数综合题。分析(1)首先解方程得出A,B两点的坐标,进而利用待定系数法求出二次函数解析式即可;(2)首先求出AB的直线解析式,以及BO解析式,再利用等腰三角形的性质得出当OCOP时,当OPPC时,点P在线段OC的中垂线上,当OCPC时分别求出X的值即可;利用SBODSODQSBDQ得出关于X的二次函数,进而得出最值即可解答解(1)解方程X22X30,得X13,X21MN,M1,N3(1分)A(1,1),B(3,3)抛物线过原点,设抛物线的解析式为YAX2BX解得,抛物线的解析式为(4分)(2)设直线AB的解析式为YKXB解得,直线AB的解析式为C点坐标为(0,)(6分)直线OB过点O(0,0),B(3,3),直线OB的解析式为YXOPC为等腰三角形,OCOP或OPPC或OCPC设P(X,X),(I)当OCOP时,解得,(舍去)P1(,)(II)当OPPC时,点P在线段OC的中垂线上,P2(,)(III)当OCPC时,由,解得,X20(舍去)P3(,)P点坐标为P1(,)或P2(,)或P3(,)(9分)过点D作DGX轴,垂足为G,交OB于Q,过B作BHX轴,垂足为H设Q(X,X),D(X,)SBODSODQSBDQDQOGDQGH,DQ(OGGH),0X3,当时,S取得最大值为,此时D(,)(13分)点评此题主要考查了二次函数的综合应用以及等腰三角形的性质和三角形面积求法等知识,求面积最值经常利用二次函数的最值求法得出【152012衢州】24如图,把两个全等的RTAOB和RTCOD分别置于平面直角坐标系中,使直角边OB、OD在X轴上已知点A(1,2),过A、C两点的直线分别交X轴、Y轴于点E、F抛物线YAX2BXC经过O、A、C三点(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作Y轴的平行线交抛物线于点M,交X轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形若存在,求出此时点P的坐标;若不存在,请说明理由(3)若AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),AOB在平移过程中与COD重叠部分面积记为S试探究S是否存在最大值若存在,求出这个最大值;若不存在,请说明理由考点二次函数综合题。分析(1)抛物线YAX2BXC经过点O、A、C,利用待定系数法求抛物线的解析式;(2)根据等腰梯形的性质,确定相关点的坐标以及线段长度的数量关系,得到一元二次方程,求出T的值,从而可解结论存在点P(,),使得四边形ABPM为等腰梯形;(3)本问关键是求得重叠部分面积S的表达式,然后利用二次函数的极值求得S的最大值解答中提供了三种求解面积S表达式的方法,殊途同归,可仔细体味解答解(1)抛物线YAX2BXC经过点O、A、C,可得C0,解得A,B,抛物线解析式为YX2X(2)设点P的横坐标为T,PNCD,OPNOCD,可得PNP(T,),点M在抛物线上,M(T,T2T)如解答图1,过M点作MGAB于G,过P点作PHAB于H,AGYAYM2(T2T)T2T2,BHPN当AGBH时,四边形ABPM为等腰梯形,T2T2,化简得3T28T40,解得T12(不合题意,舍去),T2,点P的坐标为(,)存在点P(,),使得四边形ABPM为等腰梯形(3)如解答图2,AOB沿AC方向平移至AOB,AB交X轴于T,交OC于Q,AO交X轴于K,交OC于R求得过A、C的直线为YACX3,可设点A的横坐标为A,则点A(A,A3),易知OQTOCD,可得QT,点Q的坐标为(A,)解法一设AB与OC相交于点J,ARQAOJ,相似三角形对应高的比等于相似比,HT2A,KTAT(3A),AQYAYQ(A3)3AS四边形RKTQSAKTSARQKTATAQHT(3A)(3A)(A2)A2A(A)2由于0,在线段AC上存在点A(,),能使重叠部分面积S取到最大值,最大值为解法二过点R作RHX轴于H,则由ORHOCD,得由RKHAOB,得由,得KHOH,OKOH,KTOTOKAOH由AKTAOB,得,则KT由,得AOH,即OH2A2,RHA1,所以点R的坐标为R(2A2,A1)S四边形RKTQSQOTSROKOTQTOKRHAA(1A)(A1)A2A(A)2由于0,在线段AC上存在点A(,),能使重叠部分面积S取到最大值,最大值为解法三AB2,OB1,TANOABTANOAB,KTATTANOAB(A3)A,OKOTKTA(A)A,过点R作RHX轴于H,TANOABTANRKH2,RH2KH又TANOABTANROH,2RHOKKHARH,RHA1,OH2(A1),点R坐标R(2A2,A1)S四边形RKTQSAKTSARQKTATAQ(XQXR)(3A)(3A)(A2)A2A(A)2由于0,在线段AC上存在点A(,),能使重叠部分面积S取到最大值,最大值为点评本题综合考查了二次函数的图象与性质、待定系数法、二次函数的最值、等腰梯形、相似三角形、图形的平移以及几何图形面积的求法,涉及到的知识点众多,难度较大,对学生能力要求较高,有利于训练并提升学生解决复杂问题的能力【162012绍兴】25如图,矩形OABC的两边在坐标轴上,连接AC,抛物线24YX经过A,B两点。(1)求A点坐标及线段AB的长;(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为T秒。当PQAC时,求T的值;当PQAC时,对于抛物线对称轴上一点H,HOQPOQ,求点H的纵坐标的取值范围。考点二次函数综合题。解答解(1)由抛物线24YX知当X0时,Y2,A(0,2)。由于四边形OABC是矩形,所以ABX轴,即A、B的纵坐标相同;当2Y时,2X,解得1204X,B(4,2),AB4。(2)由题意知A点移动路程为APT,Q点移动路程为717TT。当Q点在OA上时,即02,917T时,如图1,若PQAC,则有RTQAPRTABC。APBC,即74T,5T。79,此时T值不合题意。当Q点在OC上时,即276T,9137T时,如图2,过Q点作QDAB。ADOQ7(T1)27T9。DPT(7T9)96T。若PQAC,则有RTQDPRTABC,QADPBC,即2964T,3T。917,4T符合题意。当Q点在BC上时,即678T,3175T时,如图3,若PQAC,过Q点作QGAC,则QGPG,即GQP90。QPB90,这与QPB的内角和为180矛盾,此时PQ不与AC垂直。综上所述,当43T时,有PQAC。当PQAC时,如图4,BPQBAC,BPQAC,48712TT,解得T2,即当T2时,PQAC。此时AP2,BQCQ1,P(2,2),Q(4,1)。抛物线对称轴的解析式为X2,当H1为对称轴与OP的交点时,有H1OQPOQ,当YH2时,HOQPOQ。作P点关于OQ的对称点P,连接PP交OQ于点M,过P作PN垂直于对称轴,垂足为N,连接OP,在RTOCQ中,OC4,CQ1。OQ17,SOPQS四边形ABCDSAOPSCOQSQBP312OQPM,PM617,PP2PM2,NPPCOQ。RTCOQRTNPPCQPNO,127,48,P(46,),直线OP的解析式为723YX,OP与NP的交点H2(2,14)。当H143Y时,HOPPOQ。综上所述,当或H23Y时,HOQPOQ。【172012南充】22如图,C的内接AOB中,ABAO4,TANAOB43,抛物线YAX2BX经过点A4,0与点(2,6)(1)求抛物线的函数解析式(2)直线M与C相切于点A交Y轴于点D,动点P在线段OB上,从点O出发向点B运动同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQAD时,求运动时间T的值(3)点R在抛物线位于X轴下方部分的图象上,当ROB面积最大时,求点R的坐标考点二次函数综合题;解二元一次方程组;二次函数最值的应用;三角函数和勾股定理的应用;待定系数法求二次函数解析式。专题计算题;代数几何综合题。分析(1)点A4,0与点(2,6)代入抛物线YAX2BX,得16A4B0A214A2B6解得B2从而求出解析式。(2)先得到OADAOB,作OFAD于F,再算出OF的长,T秒时,OPT,DQ2T,若PQAD则FQOPTDFDQFQTODF中,TDF2OD24318(秒)(3)先设出RX,21X22X,作RGY轴于G作RHOB于H交Y轴于I,则RGXOG21X22X再算出IR、HI的长,从而求出RH的长52X4120当X4时,RH最大。SROB最大。这时21X22X22325点R1,325解答(1)把点A4,0与点(2,6)代入抛物线YAX2BX,得16A4B0A214A2B6解得B2抛物线的函数解析式为Y21X22X(2)连AC交OB于E直线M切C于AACM,弦ABAOERRORERRORACOBMOBOADAOBOA4TANAOB43ODOATANOAD43作OFAD于FOFOASINOAD45324T秒时,OPT,DQ2T,若PQAD则FQOPTDFDQFQTODF中,TDF2OFD24318(秒)(3)令RX,21X22X0X4作RGY轴于G作RHOB于H交Y轴于I【182012梅州】23如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线L过点D且与X轴平行,点P、Q分别是L和X轴正半轴上动点,满足PQO60(1)点B的坐标是(6,2);CAO30度;当点Q与点A重合时,点P的坐标为(3,3);(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使AMN为等腰三角形若存在,请直接写出点P的横坐标为M;若不存在,请说明理由(3)设点P的横坐标为X,OPQ与矩形OABC的重叠部分的面积为S,试求S与X的函数关系式和相应的自变量X的取值范围考点相似三角形的判定与性质;矩形的性质;梯形;解直角三角形。专题代数几何综合题。分析(1)由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;由正切函数,即可求得CAO的度数,由三角函数的性质,即可求得点P的坐标;(2)分别从MNAN,AMAN与AMMN去分析求解即可求得答案;(3)分别从当0X3时,当3X5时,当5X9时,当X9时去分析求解即可求得答案解答解(1)四边形OABC是矩形,ABOC,OABC,A(6,0)、C(0,2),点B的坐标为(6,2);TANCAO,CAO30;如下图当当点Q与点A重合时,过点P作PEOA于E,PQO60,D(0,3),PE3,AE3,OEOAAE633,点P的坐标为(3,3);故答案为(6,2),30,(3,3);(2)情况MNAN3,则AMNMAN30,MNO60,PQO60,即MQO60,点N与Q重合,点P与D重合,此时M0,情况,如图AMAN,作MJX轴、PIX轴;MJMQSIN60AQSIN60(OAIQOI)SIN60(3M)AMAN,可得(3M),解得M3,情况AMNM,此时M的横坐标是45,过点P作PKOA于K,过点M作MGOA于G,MG,QK3,GQ,KG30525,AGAN15,OK2,M2,(3)当0X3时,如图,OIX,IQPITAN603,OQOIIQ3X;由题意可知直线LBCOA,可得,EF(3X),此时重叠部分是梯形,其面积为S梯形(EFOQ)OC(3X),当3X5时,SS梯形SHAQS梯形AHAQ(3X)(X3)2,当5X9时,S(BEOA)OC(12X),当9X时,SOAAH点评此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用【192012扬州】27已知抛物线YAX2BXC经过A1,0、B3,0、C0,3三点,直线L是抛物线的对称轴1求抛物线的函数关系式;2设点P是直线L上的一个动点,当PAC的周长最小时,求点P的坐标;3在直线L上是否存在点M,使MAC为等腰三角形若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由考点二次函数综合题。专题综合题;分类讨论。分析1直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可2由图知A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知若连接BC,那么BC与直线L的交点即为符合条件的P点3由于MAC的腰和底没有明确,因此要分三种情况来讨论MAAC、MAMC、ACMC;可先设出M点的坐标,然后用M点纵坐标表示MAC的三边长,再按上面的三种情况列式求解解答解1将A1,0、B3,0、C0,3代入抛物线YAX2BXC中,得,解得抛物线的解析式YX22X32连接BC,直线BC与直线L的交点为P;设直线BC的解析式为YKXB,将B3,0,C0,3代入上式,得,解得直线BC的函数关系式YX3;当X1时,Y2,即P的坐标1,23抛物线的解析式为X1,设M1,M,已知A1,0、C0,3,则MA2M24,MC2M26M10,AC210;若MAMC,则MA2MC2,得M24M26M10,得M1;若MAAC,则MA2AC2,得M2410,得M;若MCAC,则MC2AC2,得M26M1010,得M0,M6;当M6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M1,1,1,11,0点评该二次函数综合题涉及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论