![[毕业设计精品论文]数形结合思想在解题中的应用 外文_第1页](http://file.renrendoc.com/FileRoot1/2017-12/8/ef89420c-7b09-4a38-b11b-7c2612ade11c/ef89420c-7b09-4a38-b11b-7c2612ade11c1.gif)
![[毕业设计精品论文]数形结合思想在解题中的应用 外文_第2页](http://file.renrendoc.com/FileRoot1/2017-12/8/ef89420c-7b09-4a38-b11b-7c2612ade11c/ef89420c-7b09-4a38-b11b-7c2612ade11c2.gif)
![[毕业设计精品论文]数形结合思想在解题中的应用 外文_第3页](http://file.renrendoc.com/FileRoot1/2017-12/8/ef89420c-7b09-4a38-b11b-7c2612ade11c/ef89420c-7b09-4a38-b11b-7c2612ade11c3.gif)
![[毕业设计精品论文]数形结合思想在解题中的应用 外文_第4页](http://file.renrendoc.com/FileRoot1/2017-12/8/ef89420c-7b09-4a38-b11b-7c2612ade11c/ef89420c-7b09-4a38-b11b-7c2612ade11c4.gif)
![[毕业设计精品论文]数形结合思想在解题中的应用 外文_第5页](http://file.renrendoc.com/FileRoot1/2017-12/8/ef89420c-7b09-4a38-b11b-7c2612ade11c/ef89420c-7b09-4a38-b11b-7c2612ade11c5.gif)
已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DEPARTMENTOFMATHEMATICSEDUCATIONJWILSON,EMT669THEPYTHAGOREANTHEOREMBYSTEPHANIEJMORRISTHEPYTHAGOREANTHEOREMWASONEOFTHEEARLIESTTHEOREMSKNOWNTOANCIENTCIVILIZATIONSTHISFAMOUSTHEOREMISNAMEDFORTHEGREEKMATHEMATICIANANDPHILOSOPHER,PYTHAGORASPYTHAGORASFOUNDEDTHEPYTHAGOREANSCHOOLOFMATHEMATICSINCORTONA,AGREEKSEAPORTINSOUTHERNITALYHEISCREDITEDWITHMANYCONTRIBUTIONSTOMATHEMATICSALTHOUGHSOMEOFTHEMMAYHAVEACTUALLYBEENTHEWORKOFHISSTUDENTSTHEPYTHAGOREANTHEOREMISPYTHAGORASMOSTFAMOUSMATHEMATICALCONTRIBUTIONACCORDINGTOLEGEND,PYTHAGORASWASSOHAPPYWHENHEDISCOVEREDTHETHEOREMTHATHEOFFEREDASACRIFICEOFOXENTHELATERDISCOVERYTHATTHESQUAREROOTOF2ISIRRATIONALANDTHEREFORE,CANNOTBEEXPRESSEDASARATIOOFTWOINTEGERS,GREATLYTROUBLEDPYTHAGORASANDHISFOLLOWERSTHEYWEREDEVOUTINTHEIRBELIEFTHATANYTWOLENGTHSWEREINTEGRALMULTIPLESOFSOMEUNITLENGTHMANYATTEMPTSWEREMADETOSUPPRESSTHEKNOWLEDGETHATTHESQUAREROOTOF2ISIRRATIONALITISEVENSAIDTHATTHEMANWHODIVULGEDTHESECRETWASDROWNEDATSEATHEPYTHAGOREANTHEOREMISASTATEMENTABOUTTRIANGLESCONTAININGARIGHTANGLETHEPYTHAGOREANTHEOREMSTATESTHAT“THEAREAOFTHESQUAREBUILTUPONTHEHYPOTENUSEOFARIGHTTRIANGLEISEQUALTOTHESUMOFTHEAREASOFTHESQUARESUPONTHEREMAININGSIDES“FIGURE1ACCORDINGTOTHEPYTHAGOREANTHEOREM,THESUMOFTHEAREASOFTHETWOREDSQUARES,SQUARESAANDB,ISEQUALTOTHEAREAOFTHEBLUESQUARE,SQUARECTHUS,THEPYTHAGOREANTHEOREMSTATEDALGEBRAICALLYISFORARIGHTTRIANGLEWITHSIDESOFLENGTHSA,B,ANDC,WHERECISTHELENGTHOFTHEHYPOTENUSEALTHOUGHPYTHAGORASISCREDITEDWITHTHEFAMOUSTHEOREM,ITISLIKELYTHATTHEBABYLONIANSKNEWTHERESULTFORCERTAINSPECIFICTRIANGLESATLEASTAMILLENNIUMEARLIERTHANPYTHAGORASITISNOTKNOWNHOWTHEGREEKSORIGINALLYDEMONSTRATEDTHEPROOFOFTHEPYTHAGOREANTHEOREMIFTHEMETHODSOFBOOKIIOFEUCLIDSELEMENTSWEREUSED,ITISLIKELYTHATITWASADISSECTIONTYPEOFPROOFSIMILARTOTHEFOLLOWING“ALARGESQUAREOFSIDEABISDIVIDEDINTOTWOSMALLERSQUARESOFSIDESAANDBRESPECTIVELY,ANDTWOEQUALRECTANGLESWITHSIDESAANDBEACHOFTHESETWORECTANGLESCANBESPLITINTOTWOEQUALRIGHTTRIANGLESBYDRAWINGTHEDIAGONALCTHEFOURTRIANGLESCANBEARRANGEDWITHINANOTHERSQUAREOFSIDEABASSHOWNINTHEFIGURESTHEAREAOFTHESQUARECANBESHOWNINTWODIFFERENTWAYS1ASTHESUMOFTHEAREAOFTHETWORECTANGLESANDTHESQUARES2ASTHESUMOFTHEAREASOFASQUAREANDTHEFOURTRIANGLESNOW,SETTINGTHETWORIGHTHANDSIDEEXPRESSIONSINTHESEEQUATIONSEQUAL,GIVESTHEREFORE,THESQUAREONCISEQUALTOTHESUMOFTHESQUARESONAANDBBURTON1991THEREAREMANYOTHERPROOFSOFTHEPYTHAGOREANTHEOREMONECAMEFROMTHECONTEMPORARYCHINESECIVILIZATIONFOUNDINTHEOLDESTEXTANTCHINESETEXTCONTAININGFORMALMATHEMATICALTHEORIES,THEARITHMETICCLASSICOFTHEGNOMANANDTHECIRCULARPATHSOFHEAVENTHEPROOFOFTHEPYTHAGOREANTHEOREMTHATWASINSPIREDBYAFIGUREINTHISBOOKWASINCLUDEDINTHEBOOKVIJAGANITA,ROOTCALCULATIONS,BYTHEHINDUMATHEMATICIANBHASKARABHASKARASONLYEXPLANATIONOFHISPROOFWAS,SIMPLY,“BEHOLD“THESEPROOFSANDTHEGEOMETRICALDISCOVERYSURROUNDINGTHEPYTHAGOREANTHEOREMLEDTOONEOFTHEEARLIESTPROBLEMSINTHETHEORYOFNUMBERSKNOWNASTHEPYTHGOREANPROBLEMTHEPYTHAGOREANPROBLEMFINDALLRIGHTTRIANGLESWHOSESIDESAREOFINTEGRALLENGTH,THUSFINDINGALLSOLUTIONSINTHEPOSITIVEINTEGERSOFTHEPYTHAGOREANEQUATIONTHETHREEINTEGERSX,Y,ZTHATSATISFYTHISEQUATIONISCALLEDAPYTHAGOREANTRIPLESOMEPYTHAGOREANTRIPLESXYZ345512137242594041116061THEFORMULATHATWILLGENERATEALLPYTHAGOREANTRIPLESFIRSTAPPEAREDINBOOKXOFEUCLIDSELEMENTSWHERENANDMAREPOSITIVEINTEGERSOFOPPOSITEPARITYANDMNINHISBOOKARITHMETICA,DIOPHANTUSCONFIRMEDTHATHECOULDGETRIGHTTRIANGLESUSINGTHISFORMULAALTHOUGHHEARRIVEDATITUNDERADIFFERENTLINEOFREASONINGTHEPYTHAGOREANTHEOREMCANBEINTRODUCEDTOSTUDENTSDURINGTHEMIDDLESCHOOLYEARSTHISTHEOREMBECOMESINCREASINGLYIMPORTANTDURINGTHEHIGHSCHOOLYEARSITISNOTENOUGHTOMERELYSTATETHEALGEBRAICFORMULAFORTHEPYTHAGOREANTHEOREMSTUDENTSNEEDTOSEETHEGEOMETRICCONNECTIONSASWELLTHETEACHINGANDLEARNINGOFTHEPYTHAGOREANTHEOREMCANBEENRICHEDANDENHANCEDTHROUGHTHEUSEOFDOTPAPER,GEOBOARDS,PAPERFOLDING,ANDCOMPUTERTECHNOLOGY,ASWELLASMANYOTHERINSTRUCTIONALMATERIALSTHROUGHTHEUSEOFMANIPULATIVESANDOTHEREDUCATIONALRESOURCES,THEPYTHAGOREANTHEOREMCANMEANMUCHMORETOSTUDENTSTHANJUSTANDPLUGGINGNUMBERSINTOTHEFORMULATHEFOLLOWINGISAVARIETYOFPROOFSOFTHEPYTHAGOREANTHEOREMINCLUDINGONEBYEUCLIDTHESEPROOFS,ALONGWITHMANIPULATIVESANDTECHNOLOGY,CANGREATLYIMPROVESTUDENTSUNDERSTANDINGOFTHEPYTHAGOREANTHEOREMTHEFOLLOWINGISASUMMATIONOFTHEPROOFBYEUCLID,ONEOFTHEMOSTFAMOUSMATHEMATICIANSTHISPROOFCANBEFOUNDINBOOKIOFEUCLIDSELEMENTSPROPOSITIONINRIGHTANGLEDTRIANGLESTHESQUAREONTHEHYPOTENUSEISEQUALTOTHESUMOFTHESQUARESONTHELEGSFIGURE2EUCLIDBEGANWITHTHEPYTHAGOREANCONFIGURATIONSHOWNABOVEINFIGURE2THEN,HECONSTRUCTEDAPERPENDICULARLINEFROMCTOTHESEGMENTDJONTHESQUAREONTHEHYPOTENUSETHEPOINTSHANDGARETHEINTERSECTIONSOFTHISPERPENDICULARWITHTHESIDESOFTHESQUAREONTHEHYPOTENUSEITLIESALONGTHEALTITUDETOTHERIGHTTRIANGLEABCSEEFIGURE3FIGURE3NEXT,EUCLIDSHOWEDTHATTHEAREAOFRECTANGLEHBDGISEQUALTOTHEAREAOFSQUAREONBCANDTHATTHEAREOFTHERECTANGLEHAJGISEQUALTOTHEAREAOFTHESQUAREONACHEPROVEDTHESEEQUALITIESUSINGTHECONCEPTOFSIMILARITYTRIANGLESABC,AHC,ANDCHBARESIMILARTHEAREAOFRECTANGLEHAJGISHAAJANDSINCEAJAB,THEAREAISALSOHAABTHESIMILARITYOFTRIANGLESABCANDAHCMEANSANDTHEREFOREOR,ASTOBEPROVED,THEAREAOFTHERECTANGLEHAJGISTHESAMEASTHEAREAOFTHESQUAREONSIDEACINTHESAMEWAY,TRIANGLESABCANDCHGARESIMILARSOANDSINCETHESUMOFTHEAREASOFTHETWORECTANGLESISTHEAREAOFTHESQUAREONTHEHYPOTENUSE,THISCOMPLETESTHEPROOFEUCLIDWASANXIOUSTOPLACETHISRESULTINHISWORKASSOONASPOSSIBLEHOWEVER,SINCEHISWORKONSIMILARITYWASNOTTOBEUNTILBOOKSVANDVI,ITWASNECESSARYFORHIMTOCOMEUPWITHANOTHERWAYTOPROVETHEPYTHAGOREANTHEOREMTHUS,HEUSEDTHERESULTTHATPARALLELOGRAMSAREDOUBLETHETRIANGLESWITHTHESAMEBASEANDBETWEENTHESAMEPARALLELSDRAWCJANDBETHEAREAOFTHERECTANGLEAHGJISDOUBLETHEAREAOFTRIANGLEJAC,ANDTHEAREAOFSQUAREACLEISDOUBLETRIANGLEBAETHETWOTRIANGLESARECONGRUENTBYSASTHESAMERESULTFOLLOWSINASIMILARMANNERFORTHEOTHERRECTANGLEANDSQUAREKATZ,1993CLICKHEREFORAGSPANIMATIONTOILLUSTRATETHISPROOFTHENEXTTHREEPROOFSAREMOREEASILYSEENPROOFSOFTHEPYTHAGOREANTHEOREMANDWOULDBEIDEALFORHIGHSCHOOLMATHEMATICSSTUDENTSINFACT,THESEAREPROOFSTHATSTUDENTSCOULDBEABLETOCONSTRUCTTHEMSELVESATSOMEPOINTTHEFIRSTPROOFBEGINSWITHARECTANGLEDIVIDEDUPINTOTHREETRIANGLES,EACHOFWHICHCONTAINSARIGHTANGLETHISPROOFCANBESEENTHROUGHTHEUSEOFCOMPUTERTECHNOLOGY,ORWITHSOMETHINGASSIMPLEASA3X5INDEXCARDCUTUPINTORIGHTTRIANGLESFIGURE4FIGURE5ITCANBESEENTHATTRIANGLES2INGREENAND1INRED,WILLCOMPLETELYOVERLAPTRIANGLE3INBLUENOW,WECANGIVEAPROOFOFTHEPYTHAGOREANTHEOREMUSINGTHESESAMETRIANGLESPROOFICOMPARETRIANGLES1AND3FIGURE6ANGLESEANDD,RESPECTIVELY,ARETHERIGHTANGLESINTHESETRIANGLESBYCOMPARINGTHEIRSIMILARITIES,WEHAVEANDFROMFIGURE6,BCADSO,BYCROSSMULTIPLICATION,WEGETIICOMPARETRIANGLES2AND3FIGURE7BYCOMPARINGTHESIMILARITIESOFTRIANGLES2AND3WEGETFROMFIGURE4,ABCDBYSUBSTITUTION,CROSSMULTIPLICATIONGIVESFINALLY,BYADDINGEQUATIONS1AND2,WEGETFROMTRIANGLE3,ACAEECSOFIGURE8WEHAVEPROVEDTHEPYTHAGOREANTHEOREMTHENEXTPROOFISANOTHERPROOFOFTHEPYTHAGOREANTHEOREMTHATBEGINSWITHARECTANGLEITBEGINSBYCONSTRUCTINGRECTANGLECADEWITHBADANEXT,WECONSTRUCTTHEANGLEBISECTOROFBADANDLETITINTERSECTEDATPOINTFTHUS,BAFISCONGRUENTTODAF,AFAF,ANDBADASO,BYSAS,TRIANGLEBAFTRIANGLEDAFSINCEADFISARIGHTANGLE,ABFISALSOARIGHTANGLEFIGURE9NEXT,SINCEMEBFMABCMABF180DEGREESANDMABF90DEGREES,EBFANDABCARECOMPLEMENTARYTHUS,MEBFMABC90DEGREESWEALSOKNOWTHATMBACMABCMACB180DEGREESSINCEMACB90DEGREES,MBACMABC90DEGREESTHEREFORE,MEBFMABCMBACMABCANDMBACMEBFBYTHEAASIMILARITYTHEOREM,TRIANGLEEBFISSIMILARTOTRIANGLECABNOW,LETKBETHESIMILARITYRATIOBETWEENTRIANGLESEBFANDCABFIGURE10THUS,TRIANGLEEBFHASSIDESWITHLENGTHSKA,KB,ANDKCSINCEFBFD,FDKCALSO,SINCETHEOPPOSITESIDESOFARECTANGLEARECONGRUENT,BKAKCANDCAKBBYSOLVINGFORK,WEHAVEANDBKACCAKB()THUS,BYCROSSMULTIPLICATION,THEREFORE,ANDWEHAVECOMPLETEDTHEPROOFTHENEXTPROOFOFTHEPYTHAGOREANTHEOREMTHATWILLBEPRESENTEDISONETHATBEGINSWITHARIGHTTRIANGLEINTHENEXTFIGURE,TRIANGLEABCISARIGHTTRIANGLEITSRIGHTANGLEISANGLECFIGURE11NEXT,DRAWCDPERPENDICULARTOABASSHOWNINTHENEXTFIGUREFIGURE12TRIANGLE1COMPARETRIANGLES1AND3TRIANGLE1GREENISTHERIGHTTRIANGLETHATWEBEGANWITHPRIORTOCONSTRUCTINGCDTRIANGLE3REDISONEOFTHETWOTRIANGLESFORMEDBYTHECONSTRUCTIONOFCDFIGURE13TRIANGLE1TRIANGLE3BYCOMPARINGTHESETWOTRIANGLES,WECANSEETHATCOMPARETRIANGLES1AND2TRIANGLE1GREENISTHESAMEASABOVETRIANGLE2BLUEISTHEOTHERTRIANGLEFORMEDBYCONSTRUCTINGCDITSRIGHTANGLEISANGLEDFIGURE14TRIANGLE1TRIANGLE2BYCOMPARINGTHESETWOTRIANGLES,WESEETHATBYADDINGEQUATIONS3AND4WEGETFROMFIGURES11AND12,WITHCD,WEHAVETHATPQCBYSUBSTITUTION,WEGETTHENEXTPROOFOFTHEPYTHAGOREANTHEOREMTHATWILLBEPRESENTEDISONEINWHICHATRAPEZOIDWILLBEUSEDFIGURE15BYTHECONSTRUCTIONTHATWASUSEDTOFORMTHISTRAPEZOID,ALL6OFTHETRIANGLESCONTAINEDINTHISTRAPEZOIDARERIGHTTRIANGLESTHUS,AREAOFTRAPEZOIDTHESUMOFTHEAREASOFTHE6TRIANGLESANDBYUSINGTHERESPECTIVEFORMULASFORAREA,WEGETWEHAVECOMPLETEDTHEPROOFOFTHEPYTHAGOREANTHEOREMUSINGTHETRAPEZOIDTHENEXTPROOFOFTHEPYTHAGOREANTHEOREMTHATIWILLPRESENTISONETHATCANBETAUGHTANDPROVEDUSINGPUZZLESTHESEPUZZLESCANBECONSTRUCTEDUSINGTHEPYTHAGOREANCONFIGURATIONANDTHEN,DISSECTINGITINTODIFFERENTSHAPESBEFORETHEPROOFISPRESENTED,ITISIMPORTANTTHATTHENEXTFIGUREISEXPLOREDSINCEITDIRECTLYRELATESTOTHEPROOFFIGURE16INTHISPYTHAGOREANCONFIGURATION,THESQUAREONTHEHYPOTENUSEHASBEENDIVIDEDINTO4RIGHTTRIANGLESAND1SQUARE,MNPQ,INTHECENTERSINCEMNANAMABEACHSIDEOFSQUAREMNPQHASLENGTHOFABTHISGIVESTHEFOLLOWINGAREAOFSQUAREONTHEHYPOTENUSESUMOFTHEAREASOFTHE4TRIANGLESANDTHEAREAOFSQUAREMNPQASMENTIONEDABOVE,THISPROOFOFTHEPYTHAGOREANTHEOREMCANBEFURTHEREXPLOREDANDPROVEDUSINGPUZZLESTHATAREMADEFROMTHEPYTHAGOREANCONFIGURATIONSTUDENTSCANMAKETHESEPUZZLESANDTHENUSETHEPIECESFROMSQUARESONTHELEGSOFTHERIGHTTRIANGLETOCOVERTHESQUAREONTHEHYPOTENUSETHISCANBEAGREATCONNECTIONBECAUSEITISA“HANDSON“ACTIVITYSTUDENTSCANTHENUSETHEPUZZLETOPROVETHEPYTHAGOREANTHEOREMONTHEIROWNFIGURE17TOCREATETHISPUZZLE,COPYTHESQUAREONBCTWICE,ONCEPLACEDBELOWTHESQUAREONACANDONCETOTHERIGHTOFTHESQUAREONACASSHOWNINFIGURE17PROOFUSINGFIGURE17TRIANGLECDEISCONGRUENTTOTRIANGLEACBBYLEGLEGINTRIANGLEACB,MACB90ANDTHESIDESHAVELENGTHSA,B,CINTRIANGLECDE,MCDE90ANDTHESIDESHAVELENGTHSA,B,CTRIANGLEEGHISCONGRUENTTOTRIANGLEACBBYLEGLEGTHEMEGH90ANDITSSIDESHAVELENGTHSAANDCSINCEEFBAAI,EGBTHUSTHEDIAGONALSCEANDEHAREBOTHEQUALTOCNOTEPIECES4AND7,ANDPIECES5AND6ARENOTSEPARATEDBYCALCULATINGTHEAREAOFEACHPIECE,ITCANBESHOWNTHATAREA1AREA2AREA3ARE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南软件职业技术大学《内部控制理论与实践》2023-2024学年第二学期期末试卷
- 四川财经职业学院《播音发声学》2023-2024学年第二学期期末试卷
- 内蒙古大学《机器学习与深度学习》2023-2024学年第二学期期末试卷
- 湖北警官学院《仓储管理与库存控制》2023-2024学年第二学期期末试卷
- 上海工艺美术职业学院《冶金质量分析》2023-2024学年第二学期期末试卷
- 西安海棠职业学院《矿山装备及自动化》2023-2024学年第二学期期末试卷
- 塔里木大学《控制工程基础》2023-2024学年第二学期期末试卷
- 2024年电子体重秤项目投资申请报告代可行性研究报告
- 2024年形状记忆合金项目资金筹措计划书代可行性研究报告
- 销售人员系统培训
- 00510秘书实务-自考整合版
- 护理研究中的偏倚及控制
- 小学生的龋齿预防ppt课件
- [复习]边坡客土吹附施工方案
- 冲压试题库及答案文档
- 管理人员责任追究制度
- 自动旋转门PLC控制
- 电影场记表(双机位)
- 毕设高密电法探测及数据处理解释
- 华为保密制度范文
- 冻库温度记录表
评论
0/150
提交评论