版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三节:二元一次不等式组与简单的线性规划1、 二元一次不等式表示的区域:二元一次不等式ax+by+c0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域。注意:由于对直线同一侧的所有点(x,y),把它代入ax+by+c,所得实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0) ,从ax0+by0+c的正负可以判断出ax+by+c0表示哪一侧的区域(一般在c0时,取原点作为特殊点)2、 二元一次不等式组表示的区域:二元一次不等式表示平面的部分区域,所以二元一次方程组表示各个区域的公共部分。(二元一次不等式表示的区域)例1、画出不等式2x+y-60 b、3x0+
2、2y08 d、3x0+2y08(跟踪训练)已知点(3 ,1)和点(4 ,6)在直线 3x2y + m = 0 的两侧,则( )am7或m24b7m24cm7或m24d7m 24(二元一次不等式组表示的平面区域)例3、画出不等式组表示的区域。(1) (2)(已知区域求不等式)例4、求由三直线x-y=0;x+2y-4=0及y+2=0所围成的平面区域所表示的不等式。x1yo(跟踪训练)下图所示的阴影区域用不等式组表示为 (已知不等式组求围成图形的面积)例5、求不等式组表示的平面区域的面积 (跟踪训练)在直角坐标系中,由不等式组所确定的平面区域内整点个数(绝对值不等式的画法)例6、画出不等式|x|+|
3、y|3所表示的区域。(整式不等式表示的区域)例7、画出不等式(x+2y-1)(x-y+3)0所表示的平面区域(跟踪训练)画出不等式表示的平面区域3、 线性规划:(1) 线性规划问题举例设z=2x+y,式中变量x,y满足如下条件:求z的最大值,和最小值由上面知道,变量x、y所满足的每一个不等式都表示一个平面区域,不等式组则表示这些区域的公共部分直线:l0: 2x+y=0,作一组直线与l0平行,l:2x+y=t,(t为任意实数)可知,当l在l0的右上方时,直线l上的点(x, y)满足2x+y0.(2)(线性)约束条件:即不等式组(线性)目标函数:即上式中的z= 2x+y.(3)可行解:满足线性约束
4、条件的解(x,y)叫做可行解。 可行域:由所有可行解组成的区域叫做可行域 最优解:使得目标函数取得最大值和最小值得解叫做最优解。(线性目标在线性约束条件下的最值)例1、若x, y满足约束条件求z=x+2y的最大值是(跟踪训练1)若x,y满足不等式组 则使k=6x+8y取得最大值的点的坐标是 .(跟踪训练2)已知x,y满足约束条件 则的最小值为_(最优解有无数个问题)例2、给出平面区域如图所示,其中a(5,3),b(1,1),c(1,5),若使目标函数z=ax+y(a0)取得最大值的最优解有无穷多个,则a的值是 ( )a b c2 d(跟踪训练)已知平面区域如右图所示,在平面区域内取得最大值的最优解有无数多个,则的值为 ( ) a b c d不存在 (线性规划解决实际问题)例3、某机械厂的车工分、两个等级,各级车工每人每天加工能力,成品合格率及日工资数如下表所示:级别加工能力(个/人天)成品合格率(%)工资(元/天)240975.616095.53.6工厂要求每天至少加工配件2400个,车工每出一个废品,工厂要损失2元,现有级车工8人,级车工12人,且工厂要求至少安排6名级车工,试问如何安排工作,使工厂每天支出的费用最少.(跟踪训练)某工厂要制造a种电子装置45台,b电子装置55台,为了给每台装配一个外壳,要从两种不同的薄钢板上截取,已知甲种薄钢
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妊娠合并心功能不全的药物治疗与母乳喂养的平衡策略
- 采动脉血操作试题及答案
- 2026疾病控制考试题目及答案
- 妇产科医疗纠纷预防的专科管理策略
- 头颈部肿瘤免疫治疗的PD-L1表达谱
- 教育基础考试大题及答案
- 尚德考试及答案吗
- 多组学数据与电子病历的协同分析模型
- 2025年中职第二学年(食品营养与检测)食品成分检测专项试题及答案
- 2025年高职(无人机应用技术)无人机测绘试题及答案
- 医院医疗保险费用审核制度
- 村卫生室医疗质量相关管理制度
- 非遗传承人激励机制探索-深度研究
- 中小学校园中匹克球推广策略与实践研究
- 2024年世界职业院校技能大赛高职组“体育活动设计与实施组”赛项考试题库(含答案)
- 高中地理选择性必修一(湘教版)期末检测卷02(原卷版)
- 沪教版九年级化学上册(上海版)全套讲义
- 三角函数图像变化课件
- 《内存条知识培训》课件
- 人教版(2024)七年级地理期末复习必背考点提纲
- 广东省深圳市南山区2023-2024学年四年级上学期数学期末教学质量监测试卷
评论
0/150
提交评论