福建省厦门市湖滨中学2019-2020学年高一数学上学期期中试题(含解析)_第1页
福建省厦门市湖滨中学2019-2020学年高一数学上学期期中试题(含解析)_第2页
福建省厦门市湖滨中学2019-2020学年高一数学上学期期中试题(含解析)_第3页
福建省厦门市湖滨中学2019-2020学年高一数学上学期期中试题(含解析)_第4页
福建省厦门市湖滨中学2019-2020学年高一数学上学期期中试题(含解析)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、福建省厦门市湖滨中学2020-2021学年高一数学上学期期中试题(含解析)一、单选题:本题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,Z为整数集,则中元素的个数是A. 3B. 4C. 5D. 6【答案】C【解析】【详解】试题分析:由题意,故其中的元素个数为5,选C.考点:集合中交集的运算.2.函数的定义域是()A. B. C. D. 【答案】D【解析】【分析】由函数有意义,可得,解不等式组可得定义域.【详解】要使函数有意义,则,解得:,即且,所以函数的定义域为:.故选D.【点睛】本题考查函数的定义域,一般地,函数的定义域须从四个方面考虑:(

2、1)分母不为零;(2)偶次根号下非负;(3)对数的真数大于零,底数大于零且不等于1;(4)零的零次幂没有意义.3.设函数,则的值为A. 0B. 1C. 2D. 3【答案】C【解析】因为f(x)=,则ff(2)=f(1)=2,选C4.三个数70.3,0.37,log30.7的大小关系是( )A. 70.3log30.70.37B. 0.3770.3log30.7C. 70.30.37log30.7D. log30.770.30.37【答案】C【解析】【分析】利用指数函数与对数函数的单调性即可得出【详解】解:,故选:【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题

3、5.函数f(x)2x1x9的零点所在区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)【答案】D【解析】【分析】先判断函数在定义域上连续递增,再求端点函数值即可【详解】解:函数在定义域上连续递增, ;故函数的零点所在区间是;故选:【点睛】本题考查了函数的零点的判断,属于基础题6.在160;480;960;1530这四个角中,属于第二象限角的是( )A. B. C. D. 【答案】C【解析】【分析】根据角在直角坐标系的表示进行分析【详解】解:第二象限角的取值范围是:,把相应的代入进行分析可知:属于第二象限角;属于第二象限角;属于第二象限角;不属于第二象限角;故选:【点睛

4、】考查象限角的概念,属于基础题7.若时,在同一坐标系中,函数与的图像大致是( )A. B. C. D. 【答案】C【解析】【分析】判断出两个函数的单调性,然后结合图象进行判断即可【详解】因为函数与可化为,底数,故该函数为增函数;又当时函数是减函数,结合选项可得A正确故选A【点睛】根据函数的解析式判断函数图象的形状时,可直接根据函数解析式作出函数图象,或者是根据图象变换作出函数的图象,然后进行判断得到结论本题考查判断、观察能力,属于容易题8.下列函数中,既是奇函数又在定义域上是增函数的是( )A. B. C. D. 【答案】C【解析】【分析】运用常见函数的奇偶性和单调性,结合复合函数的单调性的性

5、质,即可得到所求结论【详解】解:,都为非奇非偶函数,是定义域上的偶函数,而是定义域上奇函数,且在上,增函数,是上的增函数,故选:【点睛】本题考查函数的奇偶性和单调性的判断,注意运用常见函数的奇偶性和单调性,属于基础题9.已知函数是上的增函数,则实数的取值范围是A. B. C. D. 【答案】D【解析】函数f(x)=是R上的增函数,解得:a4,8),故选:D点睛:本题主要考查函数的单调性,考查分段函数连续单调的问题.分段函数有两段,第一段是指数函数,第二段是一次函数.对于一次函数,要单调递增就需要斜率大于零,对于指数函数,要单调递增就需要底数大于1.两段分别递增还不行,还需要在两段交接的地方,左

6、边比右边小,这样才能满足在身上单调递增.10.已知函数f(x)9xm3x1,在0,)的图象恒在x轴上方,则m的取值范围是( )A. m2B. m0且a1(1)求a的值;(2)求函数y=f(x)(x0)的值域【答案】(1);(2).【解析】【分析】(1)将点代入函数解析式即可求出(2)根据的值确定函数单调性,利用单调性求函数值域即可.【详解】(1)由题意得,所以;(2)由(1)得,因为函数在0,+)上是减函数,所以当x=0时,f(x)有最大值,所以f(x)max=f(0)=2,所以f(x)(0,2,即函数y=f(x)(x0)的值域为(0,2【点睛】本题主要考查了指数函数的单调性,属于中档题.21

7、.若函数是定义在R上的偶函数,且当x0,(1)写出函数()的解析式(2)若函数,求函数的最小值【答案】(1) (2)gmin(x)=【解析】【分析】(1)当时,从而利用奇偶性可求得;(2)当,时,化简,从而由二次函数的性质讨论以确定最小值即可【详解】解:(1)当时,故,故;(2)当,时,当时,由二次函数的性质可知,在,上是增函数,故;当时,由二次函数的性质可知,的对称轴在,上,故;当时,由二次函数的性质可知,在,上是减函数,故综上所述,【点睛】本题考查了二次函数的性质的应用及分段函数的应用,考查了分类讨论的思想,关键在于根据对称轴分类22.某商品在近天内每件的销售价格(元)与时间(天)的函数关

8、系是该商品的日销售量(件)与时间(天)的函数关系是,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是天中的第几天?【答案】第25天,日销售额最大,为1125元。【解析】【分析】根据分段函数不同段上的表达式,分别求最大值,最终取较大者分析即可获得问题解答【详解】解:日销售金额当,时,(天时,(元,当,时,而,在,时,函数递减(天时,(元,(元故所求日销售金额的最大值为1125元,且在最近30天中的第25天日销售额最大【点睛】本题考查的是分段函数应用类问题在解答的过程当中充分体现了分类讨论的思想、二次函数球最值的方法以及问题转化的能力值得同学们体会反思23.已知函数是定义在上的奇函数,且.(1)确定函数的解析式;(2)用定义证明函数在区间上是增函数;(3)解不等式.【答案】(1);(2)详见解析;(3).【解析】【分析】(1)由奇函数得,求得,再由已知,得到方程,解出,即可得到解析式;(2)运用单调性的定义,注意作差、变形和定符号、下结论几个步骤;(3)运用奇偶性和单调性,得到不等式即为,得到不等式组,解出即可【详解】(1)解:函数是定义在上的奇函数,则,即有,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论