1.探究勾股定理_第1页
1.探究勾股定理_第2页
1.探究勾股定理_第3页
1.探究勾股定理_第4页
1.探究勾股定理_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十八章 勾股定理,18.1.1 探索勾股定理,c,a,b,在ABC中,C=90.,(2)斜边大于直角边;,(1)两锐角互余;,(3) 30角所对的直角边等于斜边的一半;,C,A,B,直角三角形中,两千多年前,古希腊有个哥拉,斯学派,他们首先发现了勾股定理,因此,在国外人们通常称勾股定理为毕达哥拉斯,年希腊曾经发行了一枚纪念票。,定理。为了纪念毕达哥拉斯学派,1955,勾 股 世 界,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三

2、千多年前,两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。,我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作周髀算经中。,C,如图,小方格的边长为1.,(1)你能求出正方形R的面积吗?,用了“补”的方法,用了“割”的方法,Q,C,用了“补”的方法,用了“割”的方法,如图,小方格的边长为1.,(1)你能求出正方形R的面积吗?,a,c,

3、b,SP+SQ=SR,观察所得到的各组数据,你有什么发现?,猜想:两直角边a、b与斜边c 之间的关系?,a2+b2=c2,在方格纸上,画 一个顶点都在格点 上的直角三角形;并分别以这个直角三角形的各边为一边向三角形外作正方 形,仿照上面的方法 计算以斜边为一边的正方形的面积.,在方格纸上,画 一个顶点都在格点 上的直角三角形;并分别以这个直角三角形的各边为一边向三角形外作正方 形,仿照上面的方法 计算以斜边为一边的正方形的面积.,a,c,b,SP+SQ=SR,观察所得到的各组数据,你有什么发现?,猜想两直角边a、b与斜边c 之间的关系?,a2+b2=c2,a2+b2=c2,a,c,b,勾,股,

4、弦,是不是所有的直角三角形 的三边都满足这种关系呢,经过证明被确认正确的命题叫做定理.,有人利用这4个直角三角形拼出了右图,你能用两种方法表示大正方形的面积吗?,大正方形的面积可以表示为 ,又可以表示为:,对比两种表示方法,你得到勾股定理了吗?,(a+b),验证勾股定理:,1. 如图,你能解决这个问题吗?,X=4,2. 一高为2.5米的木梯,架在高为2.4米的墙上(如图),这时梯脚与墙的距离是多少?,A,B,C,0.7米,1、已知:a3, b4,求c,2、已知: c 10,a6,求b,A,B,C,A的面积+B的面积=C的面积,如图,学校有一块长方形花园,有极少数人为了避开拐角走“捷径”,在花园

5、内走出了一条“路”,仅仅少走了_步路, 却踩伤了花草。 (假设1米为2步),如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,仅仅少走了_步路, 却踩伤了花草。 (假设1米为2步),如图,学校有一块长方形花园,有极少数人为了避开拐角走“捷径”,在花园内走出了一条“路”,仅仅少走了_步路, 却踩伤了花草。 (假设1米为2步),3,4,“路”,A,B,C,5,几何画板演示,10,1.求下列图中表示边的未知数x、y、z的值.,81,144,x,y,z,做一做,比一比看看谁算得快!,2.求下列直角三角形中未知边的长:,可用勾股定理建立方程.,方法小结:,8,x,17,16,20,x,12,5,x,做一做,课堂练习: 一判断题. 1.ABC的两边AB=5,AC=12,则BC=13 ( ) 2. ABC的a=6,b=8,则c=10 ( ) 二填空题 1.在 ABC中, C=90,AC=6,CB=8,则 ABC面积为_,斜边为上的高为_.,24,4.8,A,B,C,D,例1 飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶上方4000米处,过了20秒,飞机距离这个男孩头顶5000米。飞机每时飞行多少千米?,A,4000米,5000米,20秒后,B,C,3000米,1、利用数格

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论