高等数学同济版下第八节多元函数的极值及其求法.ppt_第1页
高等数学同济版下第八节多元函数的极值及其求法.ppt_第2页
高等数学同济版下第八节多元函数的极值及其求法.ppt_第3页
高等数学同济版下第八节多元函数的极值及其求法.ppt_第4页
高等数学同济版下第八节多元函数的极值及其求法.ppt_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八节,一、多元函数的极值,二、最值应用问题,三、条件极值,多元函数的极值及其求法,一、 多元函数的极值,定义: 若函数,则称函数在该点取得极大值(极小值).,例如 :,在点 (0,0) 有极小值;,在点 (0,0) 有极大值;,在点 (0,0) 无极值.,极大值和极小值,统称为极值,使函数取得极值的点称为极值点.,的某去心邻域内有,说明: 使偏导数都为 0 的点称为驻点 .,例如,定理1 (必要条件),函数,偏导数,但驻点不一定是极值点.,有驻点( 0, 0 ),但在该点不取极值.,且在该点取得极值 ,则有,存在,时, 具有极值,定理2 (充分条件),的某邻域内具有一阶和二阶连续偏导数, 且,令,则: 1) 当,A0 时取极大值;,A0 时取极小值.,2) 当,3) 当,时, 没有极值.,时, 不能确定 , 需另行讨论.,若函数,例1.,求函数,的极值.,例2.讨论函数,及,是否取得极值.,在点(0,0),二、最值应用问题,函数 f 在闭域上连续,函数 f 在闭域上可达到最值,最值可疑点,驻点,边界上的最值点,特别, 当区域内部最值存在, 且只有一个极值点P 时,为极小 值,为最小 值,(大),(大),例4. 有一宽为 24cm 的长方形铁板 ,把它折起来做成一个,断面为等腰梯形的水槽,问怎样折才能使断面面积最大.,例3.,某厂要用铁板做一个体积为2,的有盖长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论