




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、汕头金山中学高一期中考试数学试卷一选择题(四选一,每小题5分,共50分)设全集U=1,2,3,4,5,6,集合A=2,4,6,B=1,2,3,5,则B等于 A B1,3,4,5,6 C1,3,5 D1,2,3,5 若幂函数的图象过点,则A B C D 下列各组函数中,表示同一函数的是A B C D 为了得到函数的图象,只需把函数的图象A向上平移一个单位B向下平移一个单位C向左平移一个单位 D向右平移一个单位下列函数中,既是偶函数,又在区间上单调递增的是:A B C D 已知则等于 A B C D 国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的1
2、4%纳税;超过4000元的按全稿酬的11%纳税某人出版了一书共纳税420元,这个人的稿费为 A 3800元 B 5600元 C 3818元 D 3000元若与在区间1,2上都是减函数,则的取值范围是A. (0,1) B. (0,1 C. (-1,0)(0,1) D. (-1,0) (0,1已知偶函数与奇函数的定义域都是,它们在上的图象分别如图、所示,则使关于的不等式成立的的取值范围是A B C D 函数在区间内恒有,则的单调递增区间为A B C D 二填空题(每小题5分,共20分)已知= 设,则 函数 在区间上的最大值比最小值大,则实数的值为 设集合且、都是集合的子集,若把叫做集合的“长度”,
3、那么集合的“长度”的最小值是 二填空题(每小题5分,共20分) ; ; ; 。三解答题(6道题,共80分)(本题12分)设函数的定义域为集合,函数 的定义域为集合。求: ,; ,。 (本题14分)已知是定义在R上的偶函数,当时,1221-1-2-1-2-2-2-2(1)求的值;求的解析式并画出简图; 讨论方程的根的情况。(本题14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为,通过块玻璃以后强度为。(1)写出关于的函数关系式;(2)通过多少块玻璃以后,光线强度减弱到原来的以下.(参考数据:,)(本题14分)已知函数在定义域上为增函数,且满足(1)求的值;
4、 (2)求的值;解不等式:19(本题14分)已知函数 当时,求函数的值域;若关于的方程有两个大于0的实根,求的取值范围;当时,求函数的最小值。(本题12分)已知, 若,求方程的解; 若关于的方程在上有两个解,求的取值范围,并证明:高一期中考试数学试答案:一选择题(四选一,每小题5分,共50分)题号12345678910答案CABDDDABCD二填空题(每小题5分,共20分) 7 ; 4 ; ; 。三解答题(6道题,共80分)(本题10分)设函数的定义域为集合,函数 的定义域为集合。求: ,; ,。 解:要使函有意义,则须 -3要使函数 有意义,则须 即 -6 -8 -10 (本题14分)已知是
5、定义在R上的偶函数,当时,1221-1-2-1-2-2-2-2(1)求的值;求的解析式并画出简图; 讨论方程的根的情况。解:(1)是定义在R上的偶函数 -3(2)当时, 于是 -5 是定义在R上的偶函数, -7画出简图 -9当,方程无实根 当,有2个根;当,有3个根; 当,有4个根; - 14(本题14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为,通过块玻璃以后强度为y(1)写出y关于的函数关系式;(2)通过多少块玻璃以后,光线强度减弱到原来的以下.(参考数据:,lg30.4771)解:(1)光线经过1块玻璃后强度为(110%)=0.9; 1分 光线经
6、过2块玻璃后强度为(110%)0.9=0.92 光线经过3块玻璃后强度为(110%)0.92=0.93 2分 光线经过x块玻璃后强度为0.9x y=0.9x(xN) 4分 (2)由题意:0.9x,0.9x, 6分 两边取对数,xlg0.9lg 8分 lg0.90,x 10分13.14,xmin=14 13分 答:通过14块玻璃以后,光线强度减弱到原来的以下. 14分(本题14分)已知函数在定义域上为增函数,且满足(1)求的值; (2) 求的值;解不等式:解:(1) 2分(2)令,则 令,则 4分 6分 8分 而函数f(x)在定义域上为增函数 12分 即原不等式的解集为 14分19(本题14分)
7、已知函数 当时,求函数的值域;若关于的方程有两个大于0的实根,求的取值范围;当时,求函数的最小值。解:设,则 -1 当时,对称轴为,开口向上 -2 单调递增 函数的值域为 -4由方程有两个大于0的实根等价于方程有两个大于1的实根,-5 则需 解得 -9 由得 -10 当,即时,在单调递减, 当,即时, 当即时,在单调递增, (说明单调性1分) -14(本题14分)已知, 若,求方程的解; 若关于的方程在上有两个解,求的取值范围,并证明:解:(1)当k2时, -1分当,即或时,方程化为解得,因为,舍去,所以 -3分当,即时,方程化为解得 -4分由得当k2时,方程的解为或-5分不妨设02,因为所以在(0,1是单调函数,故在(0,1上至多
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二手房售房合同协议书模板4篇
- 酒水供货结账合同范本
- 小房东违约合同范本
- 代理股份合同范本
- 喷漆外包简单合同范本
- 智慧数学题目及答案初二
- 教研组长工作计划幼儿园怎么写(5篇)
- 肢体猜成语最难题目及答案
- 区块链技术在供应链管理中的实践
- 时尚发布会方案
- 营造林工程监理规范(试行)
- 2025至2030中国少儿英语培训行业发展趋势分析与未来投资战略咨询研究报告
- 浙江省委党校考试试题及答案
- CJ/T 391-2012生活垃圾收集站压缩机
- 肛肠疾病中医药与西医手术治疗的结合应用
- 中国卒中学会急性缺血性卒中再灌注治疗指南(2024)解读
- 医院电梯安全保障及维保方案
- 2025-2030妇幼保健产业规划专项研究报告
- 2025年江西省安福县事业单位公开招聘辅警36名笔试题带答案
- 《物流基础》完整课件(共三个项目)
- 证件借用免责协议书范本
评论
0/150
提交评论