几种语音识别方法的比较_第1页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文列举了几种不同的语音识别方法。第一种:基于动态时间规整(Dynamic Time Warping)的算法在连续语音识别中仍然是主流方法。该方法的运算量较大,但技术上较简单,识别正确率高。在小词汇量、孤立字(词)识别系统中,也已有许多改进的DTW算法被提出。例如,利用频率尺度的DTW算法进行孤立字(词)识别的方法。第二种:基于参数模型的隐马尔可夫模型(HMM)的方法该算法主要用于大词汇量的语音识别系统,它需要较多的模型训练数据,较长的训练和识别时间,而且还需要较大的内存空间。一般连续隐马尔可夫模型要比离散隐马尔可夫模型计算量大,但识别率要高。第三种:基于非参数模型的矢量量化(VQ)的方法该方法所需的模型训练数据,训练和识别时间,工作存储空间都很小。但是VQ算法对于大词汇量语音识别的识别性能不如HMM好。在孤立字(词)语音识别系统中得到了很好的应用。另外,还有基于人工神经网络(ANN)的算法和混合算法,如ANN/HMM法,FSVQ/HMM法等。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论