第六章一元一次方程_第1页
第六章一元一次方程_第2页
第六章一元一次方程_第3页
第六章一元一次方程_第4页
第六章一元一次方程_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初2016数学学科电子教案教学内容课型 新授课课时本课(节)第1课时总第1课时(本学期通排课时数)教学目标1通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。2使学生会列一元一次方程解决一些简单的应用题。3会判断一个数是不是某个方程的解。教学重点会列一元一次方程解决一些简单的应用题。教学难点弄清题意,找出“相等关系”。学情简析 本班学生刚刚跨入少年期,理性思维的发展还很有限,加上小学基础知识薄弱,对于本节内容的学习会有点难以理解。突破重难点策略 以求解一个实际问题为切入点,经历实践、思考、探索、讨论、交等活动,培养解决问题的兴趣和能力;能辨别出方程,能判断一个数值

2、是否是某个方程的解。课程资源出处华师版教学过程共案(教学流程、作业、板书等)个案(增删改评)一、复习提问 小学里已经学过列方程解简单的应用题,我们回顾一下,如何列方程解应用题? 例如:一本笔记本12元。小红有6元钱,那她最多能买到几本这样的笔记本呢? 解:设小红能买到工本笔记本,那么根据题意,得 1.2x6因为1.256,所以小红能买到5本笔记本。(删除解题过程)二、新授:我们再来看下面一个例子:问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? 问:你能解决这个问题吗?有哪些方法? (让学生思考后,回答,教师再作讲评) 算术法:(3286

3、4)44264446(辆) 列方程解应用题: 设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。44x+64328 (1)解这个方程,就能得到所求的结果。 问:你会解这个方程吗?试试看? (学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。) 问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”小敏同学很快说出了答案。“三年”。他是这样算的: 1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。2年后,老师47岁,同学们的年龄是15

4、岁,也不是老师的三分之一。3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。你能否用方程的方法来解呢? 通过分析,列出方程:13x(45x) (2)问:你会解这个方程吗?你能否从小敏同学的解法中得到启发? 这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x1,2,3,4,代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。 把x3代人方程(2),左边13+316,右边(45+3)4816, 因为左边右边,所以x3就是这个方程的解。这种通过试验的方法得出方程的解,这也是一种基本的数

5、学思想方法。也可以据此检验一下一个数是不是方程的解。 问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少? 同学们动手试一试,大家发现了什么问题?同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?三、巩固练习 1教科书第3页练习1、2。 2补充练习:检验下列各括号内的数是不是它前面方程的解。 (1)x3(x+2)6+x (x3,x4) (2)2y(y1)3 (y1,y 2) (3)5(x1)(x2)0 (x0,x1,x2)4、 小结。 本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。

6、五、作业。教科书第3页,习题6.1第1、3题。补充:方程的概念:含有未知数的等式叫做方程。方程的解:使方程中等号左右两边相等的未知数的值叫做方程的解。如何检验:只需要将这个数代入方程的左右两边,分别计算结果,检验左右两边的值是否相等即可。补充例题 2:例子2根据题意列出方程 (1)某数的2倍与-3的差比这个数大2. (2)一个正方形的每一边都增加3cm后,所得新正方形的周长为36cm,求原正方形的边长。 (3)某社团安排住宿,若每3人住一间,则有10人无法住,若每4人一间,则可空出2个床位,问有多少间房间?教学后记教学内容6.2解一元一次方程课型 新授课课时本课(节)第1-2课时总第3课时(本

7、学期通排课时数)教学目标通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。教学重点方程的两种变形。教学难点由具体实例抽象出方程的两种变形。学情简析 学生在小学已学过了等式、等式的基本性质、方程、方程的解等知识,对方程已有初步认识.而且,学生在小学学习相关知识的过程中,已经经历了简单方程的简答、简单数量关系的分析,具有一定的解方程的能力.那时解方程的操作依据为加减法、乘除法互为逆运算的简单算理。突破重难点策略通过实际操作,给学生多一些思考和自己演算的时间。课程资源出处华师版教学过程共案(教学流程、作业、板书等)个案(增删改评)一、引入 上

8、一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成xa形式,本节课,我们将学习如何将方程变形。二、新授 让我们先做个实验,拿出预先准备好的天平和若干砝码。 测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。 如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。 如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗? 让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码

9、,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+25表示天平两盘内物体的质量关系。问:图6.2.1右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+25变形得到的?学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?让同学们看图6.2.2。左天平两盘内的砝码的质量关系可用方程表示为3x2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?把天平两边都拿去2个大砝码,相当于把方程3x2x+2两边都减去2x,得到的方程

10、的解变化了吗?如果把方程两边都加上2x呢?由图6.2.1和6.2.2可归结为;方程两边都加上或都减去同一个数或同一个整式,方程的解不变。让学生观察(3),由学生自己得出方程的第二个变形。即方程两边都乘以或除以同一个不为零的数,方程的解不变:通过对方程进行适当的变形可以求得方程的解。例1解下列方程(1)x57 (2)4x3x4解:(1) 两边都加上5,得x7+5 即 x12 (2)两边都减去3x,得x3x43x 即 x4 请同学们分别将x7+5与原方程x57;x3x43与原方程4x3x4比较,你发现了这些方程的变形。有什么共同特点? 这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当

11、于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。 注意:“移项是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。 例2解下列方程 (1)5x2 (2) x 这里的变形通常称为“将未知数的系数化为1”。 以上两个例题都是对方程进行适当的变形,得到xa的形式。 练习:课本第6页练习1、2、3。 练习中的第3题,即第2页中的方程先让学生讨论、交流。 鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。三、巩固练习教科书第7页,练习四、小结 本节课我们通

12、过天平实验,得出方程的两种变形: 1把方程两边都加上或减去同一个数或整式方程的解不变。 2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。五、作业 教科书第78页习题6.2.1第1、2、3。补充:归纳:移项的目的,把含有未知数的项移动到方程的一边(通常是左边),把常数项移动到方程的另一边(通常是右边)。注意事项:移项时要变号,不要漏掉其中的任何一项。练习一,教材练习题一归纳:“将未知数的系数化为1”讲具体做法:在方程的两边同时除以未知数的系数a。注意事项:不要把分子分母的位置颠倒了。教学后记教学

13、内容6.2解一元一次方程课型 新授课课时本课(节)第3课时总第4课时(本学期通排课时数)教学目标1了解一元一次方程的概念。2掌握含有括号的一元一次方程的解法。教学重点解含有括号的一元一次方程的解法。教学难点括号前面是负号时,去括号时忘记变号。学情简析 在小学阶段,学生已对简单方程有所认识,所以问题的设置要有层次性,课上尽量给学生更多的空间和时间分析。在新课程改革的指导下,我特别注重将数学问题与实际联系,激发学生的学习兴趣。在教学中使他们形成有效的学习技能和策略,学会把数学学习与现实生活和兴趣联系起来。突破重难点策略通过探究式的教学,学生的探究能力得到了提升,让他们体会到学习数学的兴趣,从而主动

14、地学习数学。还有要注重提高学生读题获取信息、处理信息、分析问题和表达问题的能力。课程资源出处华师版教学过程共案(教学流程、作业、板书等)个案(增删改评)一、复习提问 1解下列方程: (1)5x28 (2)5+2x4x 2去括号法则是什么?“移项”要注意什么?二、新授一元一次方程的概念 前面我们遇到的一些方程,例如44x+64328 3+x(45+x) y52y+l 问:大家观察这些方程,它们有什么共同特征? (提示:观察未知数的个数和未知数的次数。) 只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。 例1判断下列哪些是一元一次方程x3x2 x3l

15、5x23x+10 2x+yl3y5下面我们再一起来解几个一元一次方程。 例2解方程 (1) 2(x1)4 (2) 3(x2)+1x(2x1) 方程(1)该怎样解?由学生独立探索解法,并互相交流 此方程既可以先去括号求解,也可以看作关于(x1)的一元一次方程进行求解。 第(2)题可由学生自己完成后讲评,讲评时,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“”号,注意去掉括号,要改变括号内的每一项的符号。 补充例题:解方程3x3(x+1)(1+4)l 方程中有多重括号,你会解这个方程吗? 说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层

16、括号合并同类项一次,以简便运算。三、巩固练习 教科书第9页,练习,l、2、3。四、小结 本节课我们学习了一元一次方程的概念,并学习了含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。五、作业教科书第12页习题62,2第l题。补充: 补充例题: 解方程3x3(x+1)(1+4)l 方程中有多重括号,你会解这个方程吗?说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。补例:3(x-2)+1=x-(2x-1) 2-3x-4(x-1)-2= -1 X-2x-3(x+4)-6=1教学后记教学内容

17、62解一元一次方程课型 新授课课时本课(节)第4-5课时总第6课时(本学期通排课时数)教学目标 使学生掌握去分母解方程的方法,并从中体会到转化的思想。对于求解较复杂的方程,要注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。教学重点掌握去分母解方程的方法。教学难点求各分母的最小公倍数,去分母时,有时要添括号。学情简析在掌握知识方面不仅要求学生学会去分母解方程的方法,更要把前面所学的知识与之融会贯通,能够按照去分母、去括号、移项、合并同类项、系数化为1的顺序,有目的、有步骤的求一元一次方程的解,并达到灵活运用。从而体会并掌握解一元一次方程的化归思想,提高运算能力。突破重难点策略

18、 尽管学生已经在前面几节课学习了一些解一元一次方程的步骤,但是去分母的原理和容易错的地方仍然是这解课需要解决的重点和难点。通过合作探究让学生体验知识的形成和运用的过程,提高学生学习的主动性,帮助学生的数学学习。课程资源出处华师版教学过程共案(教学流程、作业、板书等)个案(增删改评)一、复习提问 1去括号和添括号法则。2求几个数的最小公倍数的方法。二、新授 例1:解方程 1 分析:如何解这个方程呢?此方程可改写成 1 所以可以去括号解这个方程,先让学生自己解。 同学们,想一想还有其他方法吗?能否把方程变形成没有分母的一元一次方程,这样,我们就可以用已学过的方法解它了。 解法二;把方程两边都乘以6

19、,去分母。 比较两种解法,可知解法二简便。 想一想,解一元一次方程有哪些步骤? 先让学生自己总结,然后互相交流,得出结论。 解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成xa的形式。解题时,要灵活运用这些步骤。 补充例2:解方程 问:如果先去分母,方程两边应同乘以一个什么数? 应乘以各分母的最小公倍数,5、2、3的最小公倍数。 三、巩固练习 教科书第10页,练习1、2。 (练习第1题是辨析题,引导学生进行分析、讨论,帮助学生在实践中自我认识和纠正解题中的错误)四、小结 1解一元一次方程有哪些步骤? 2同学们要灵活运用这些解法步

20、骤,掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。五、作业教科书第12页习题6.2.2第2题。补充:1分母是小数的一元一次方程:2.补充练习(1) (2) (3) 教学后记教学内容62解一元一次方程课型 新授课课时本课(节)第6课时总第7课时(本学期通排课时数)教学目标理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。教学重点弄清应用题题意列出方程。教学难点弄清应用题题意列出方程。学情简析 学生在用一元一次方程解应用题时,可能存

21、在分析问题时思路不同,列出方程也不同,这样部分学生可能会怀疑自己的解法存在错误。实际不是,作为老师应该鼓励学生开拓思路,教会学生怎样分析。突破重难点策略 在将例题时就贯穿其中,让学生明白只要思路正确,所列方程合理,都是正确的。这样学生在做题时就会选择合理的思路,使得方程尽可能简单明了。 课程资源出处华师版教学过程共案(教学流程、作业、板书等)个案(增删改评)一、复习1、 什么叫一元一次方程?2、 解一元一次方程的理论根据是什么?二、新授。例1、如图6.2.4(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等? 先让学生思考,

22、引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。 分析:设应从A盘内拿出盐x,可列表帮助分析。 等量关系;A盘现有盐B盘现有盐 完成后,可让学生反思,检验所求出的解是否合理。 (盘A现有盐为5l348,盘B现有盐为45+348。)培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。例2. 学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖? 引导学生弄清题意,疏理已知量和未知量: 1题目中有哪些已知量? (1)参加搬砖的初一同学和其他年级同

23、学共65名。 (2)初一同学每人搬6块,其他年级同学每人搬8块。 (3)初一和其他年级同学一共搬了400块。 2求什么?初一同学有多少人参加搬砖? 3等量关系是什么?初一同学搬砖的块数十其他年级同学的搬砖数400 如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65x)人参加搬砖;再由已知量(2)和等量关系可列出方程 6x+8(65x)400 也可以按照教科书上的列表法分析三、巩固练习 教科书第11页练习1、2、3 第l题:可引导学生画线图分析 等量关系是:AC十CB400 若设小刚在冲刺阶段花了x秒,即t1x秒,则t2(65x)秒,再由等量关系就可列出方程: 6(65x

24、)+8x=400四、小结 本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。五、作业 教科书第12页习题6.2.2第3、4、5、6题。补列:机械加工厂车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能使每天加工的大小齿轮刚好配套?解:设安排x名工人

25、加工大齿轮,则加工小齿轮的工人数为(85-x)人,根据题意得:经检验,符合题意答:安排25名工人加工大齿轮,60名工人加工小齿轮,两种刚好配套。教学后记教学内容 6.3实践与探索课型 新授课课时本课(节)第1课时总第8课时(本学期通排课时数)教学目标让学生通过独立思考,积极探索,从而发现;围成的长方形的长和宽在发生变化,但在围的过程中,长方形的周长不变,由此便可建立“等量关系”同时根据计算,发现随着长方形长与宽的变化,长方形的面积也发生变化,且长方形的长与宽越接近时,面积越大。通过问题3的教学,让学生初步体会数形结合思想的作用。教学重点通过分析图形问题中的数量关系,建立方程解决问题。教学难点找

26、出“等量关系”列出方程。学情简析学生从小学到中学,经历的就是一个从特殊到一般、从具体到抽象、从简单到复杂的质的转变过程。这个转变过程将对整个中学数学学习起到举足轻重的作用,而完成这一转变的关键时期就是初一。突破重难点策略数学思想的渗透教学.课程资源出处华师版教学过程共案(教学流程、作业、板书等)个案(增删改评)一、复习提问 1列一元一次方程解应用题的步骤是什么? 2长方形的周长公式、面积公式。二、新授 问题1用一根长60厘米的铁丝围成一个长方形。 (1)使长方形的宽是长的专,求这个长方形的长和宽。 (2)使长方形的宽比长少4厘米,求这个长方形的面积。 (3)比较(1)、(2)所得两个长方形面积

27、的大小,还能围出面积更大的长方形吗? 让学生独立探索解法,并互相交流。第(1)小题一般能由学生独立或合作完成,教师也可提示:与几何图形有关的实际问题,可画出图形,在图上标注相关量的代数式,借助直观形象有助于分析和发现数量关系。 分析:由题意知,长方形的周长始终不变,长与宽的和为60230(厘米),解决这个问题时,要抓住这个等量关系。 第(2)小题的设元,可让学生尝试、讨论,对学生所得到的结论都应给予鼓励,在讨论交流的基础上,使学生知道,不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。 (3)当长方形的长为18厘米,宽为12厘米时

28、长方形的面积1812216(平方厘米) 当长方形的长为17厘米,宽为13厘米时 长方形的面积221(平方厘米) (1)中的长方形面积比(2)中的长方形面积小。 问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。 通过计算,发现随着长方形长与宽的变化,长方形的面积也发生变 化,并且长和宽的差越小,长方形的面积越大,当长和宽相等,即成正方形时面积最大。 实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会

29、知道其中的道理。三、巩固练习 教科书第14页练习1、2。 第l题,组织学生讨论,寻找本题的“等量关系”。 用一块橡皮泥捏出的各种形状的物体,它的体积是不变的。因此等量关系是:圆柱的体积长方体的体积。 第2题,先让学生根据生活经验,开展讨论,解这道题的关键是什么?题中的等量关系是什么? 通过思考,使学生明确要解决“能否完全装下”这个问题,实质是比较这两个容器的容积大小,因此只要分别计算这两个容器的容积,结果发现装不下,接着研究第2个问题,“那么瓶内水面还有多高”呢?如果设瓶内水面还有x厘米高,那么这里的等量关系是什么? 等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积原来整瓶水的体积。从而列出

30、方程四、小结 本节课同学们认真思考,积极探索,通过分析图形问题中的数量关系,建立方程解决问题,进一步体会到运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,同学们要联系实际,积极探索,找出等量关系。五、作业教科书第15页,习题6.3.1第1、2、3。等积变形问题: “等积变形”是以形状改变而体积或面积不变为前提。常用等量关系为: 形状面积变了,周长没变; 原料体积成品体积。例. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为内高为81mm的长方体铁盒倒满水时,玻璃杯中的水的高度下降多少mm?(结果保留整数) 分析:等量关系为:圆柱形玻璃杯倒出的水体积长方体铁盒的体

31、积。 教学后记教学内容63实践与探索课型 新授课课时本课(节)第2课时总第9课时(本学期通排课时数)教学目标通过分析储蓄中的数量关系,以及商品利润等有关知识,经历运用方程解决实际问题的过程,使学生进一步体会方程是刻画现实世界的有效数学模型。教学重点探索这些实际问题中的等量关系,由此等量关系列出方程。教学难点找出能表示整个题意的等量关系。学情简析学生在小学所接触的数学对象仅仅是一些具体的数字,到了中学,则要学习表示数、字母及其构成的代数式、方程以及各种关系等;在方法方面,学生在小学只要求完成一些具体数字的计算,到了中学,则要学习推理和论证。突破重难点策略多分析,给学生自己足够的思考的时间。课程资

32、源出处华师版教学过程共案(教学流程、作业、板书等)个案(增删改评)一、复习 1储蓄中的利息、本金、利率、本利和等含义,它们之间的数量关系 利息本金年利率年数 本利和本金利息年数本金 2商品利润等有关知识。 利润售价成本 商品利润率二、新授 在本章6.l练习中讨论过的教育储蓄,是我国目前暂不征收利息税的储种,国家对其他储蓄所产生的利息征收20的个人所得税,即利息税。今天我们来探索一般的储蓄问题。问题2、 小明爸爸前年存了年利率为2.43的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?先让学生思考,试着列出方程,对有困难的学生,

33、教师可引导他们进行分析,找出等量关系。 利息利息税48.6 可设小明爸爸前年存了x元,那么二年后共得利息为 2.43X2,利息税为2.43X220 根据等量关系,得 2.43x22.43x22048.6 问,扣除利息的20,那么实际得到的利息是多少?你能否列出较简单的方程? 扣除利息的20,实际得到利息的80,因此可得 2.43x28048.6 解方程,得 x=1250 例1一家商店将某种服装按成本价提高40后标价,又以8折 (即按标价的80)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元? 大家想一想这15元的利润是怎么来的? 标价的80(即售价)成本15 若设这种服装每件的

34、成本是x元,那么 每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x80 每件服装的利润为:(1+40)x80x 由等量关系,列出方程: (1+40)x80x15 解方程,得 x125 答:每件服装的成本是125元。三、巩固练习 教科书第15页,练习1、2。四、小结 本节课我们利用一元一次方程解决有关储蓄、商品利润等实际问题,当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。五、作业:教科书第16页,习题6.

35、3.1,第3、4、5题。利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价商品进价=商品标价折扣率商品进价商品利润率=商品利润/商品进价 商品售价=商品标价折扣率 储蓄问题(1) 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税(2)利息=本金年利率期数 本息和=本金+利息 利息税=利息税率(20%)(3)年存储利息=本金年利率年数 注意 银行给利率都是年利率 期数的单位为年。教学后记教学内容63实践与探索课型 新授课课时本课(节)第3课时总第10课

36、时(本学期通排课时数)教学目标1使学生理解用一元一次方程解工程问题的本质规律;通过对“工 程问题”的分析进一步培养学生用代数方法解决实际问题的能力。 2使学生在自主探索与合作交流的过程中理解和掌握基本的数学知 识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。教学重点工程中的工作量、工作的效率和工作时间的关系。教学难点把全部工作量看作“1”。学情简析在数学对象方面,学生在小学所接触的数学对象仅仅是一些具体的数字,到了中学,则要学习表示数、字母及其构成的代数式、方程以及各种关系等;在方法方面,学生在小学只要求完成一些具体数字的计算,到了中学,则要学习推理和论证。从小学数学到中学

37、数学,必将经历一个从特殊到一般、从具体到抽象、从简单到复杂的质的转变过程。突破重难点策略先给学生分析,然后让学生列方程。最后让学生自己分析并列方程。课程资源出处华师版教学过程共案(教学流程、作业、板书等)个案(增删改评)一、复习提问 1一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全部工作量的多少? 2一件工作,如果甲单独做a小时完成,那么甲独做1小时,完成全部工作量的多少? 3工作量、工作效率、工作时间之间有怎样的关系?二、新授 让学生阅读教科书第19页中的问题3。分析:1这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?小刘提出什么问题? 已知:制作一块广告牌,师傅单独

38、完成需4天,徒弟单独做要6天。 小刘提出的问题是:两人合作需要几天完成? 2怎样用列方程解决这个问题?本题中的等量关系是什么? 等量关系是:师傅做的工作量+徒弟做的工作量1 若设两人合作需要x天完成,那么甲、乙分别做了几天?甲、乙的工作效率是多少? 本题中工作总量没有告诉,我们把它看成“1”,根据等量关系可得方程。 (略) 3你还能提出什么问题?试试看,并解答这些问题。 让学生充分思考,大胆提出问题,互相交流,对于合理的问题,让大家共同解答,对于不合理的问题,让大家探讨为什么不合理?应改为怎样提? 4李老师把两位同学的问题,合起来后,已知条件增加了什么?求什么? “徒弟先做1天”,也就是说徒弟

39、比师傅多做1天5要解决本题提出的问题,应先求什么? 先要求出师傅与徒弟各完成的工作量是多少? 两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系,列方程(略)解方程得 x2 师傅完成的工作量为(略),徒弟完成的工作量为(略)所以他们两人完成的工作量相同,因此每人各得225元。三、巩固练习 一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时;请你提出问题,并加以解答。 例如 (1)剩下的乙独做要几小时完成? (2)剩下的由甲、乙合作,还需多少小时完成? (3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?四、小结

40、1.本节课主要分析了工作问题中工作量、工作效率和工作时间之间的关系,即 工作量工作效率工作时间工作效率工作量工作时间工作时间工作量工作效率2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。五、作业:教科书习题6.3.2第1、2、3题。工程问题: 1、工程问题中的三个量及其关系为:工作总量=工作效率工作时间 经常在题目中未给出工作总量时,设工作总量为单位1,则工作效率=1/工作时间。2.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)

41、如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时开两管,问注满水池还需要多少时间?教学后记教学内容63实践与探索课型 新授课课时本课(节)第4课时总第11课时(本学期通排课时数)教学目标1、掌握数字问题,能熟练地利用相等关系列方程。2、提高学生分析实际问题中数量关系的能力。教学重点掌握数字问题,能熟练地利用相等关系列方程。教学难点找等量关系列方程。学情简析本班学生接受知识的能力较慢,关键是要让他们自己学会分析,找出等量关系,列出方程。突破重难点策略老师帮助分析找等量关系,然后让学生自

42、己找等量关系列方程。课程资源出处华师版教学过程共案(教学流程、作业、板书等)个案(增删改评)基本等量关系:一个两位数,个位上的数是x,十位上的数是y,这个两位数是_一个三位数,个位上的数的x,十位上的数是y,百位上的数是z,这个三位数是_新课探究:例1一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的,求这个两位数。练习:(1)有一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得到的两位数比原两位数大36,求原两位数。(2)一个两位数,数字之和为11,若原数加45得到的数和原数的两个数字交换位置后得到的数恰好相等,求原两位数。例2 有一些分别

43、标有5,10,15,20,25的卡片,后一张卡片上的数比前一张卡片上的数大5,小明拿到了相邻的3张卡片,且这些卡片上的数之和为240。(1)小明拿到了哪3张卡片?(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是63吗?练习:有一些卡片排成一行,上面分别标有24,30,36,42,48,小丽从中拿了相邻的3张,这3张卡片的数字之和为252.小丽拿到的是哪三张?能否拿到的数字之和是312的相邻三张?如果能,请求出是哪三张;如果不能,请说明理由。巩固练习(1) 一个三位数,数字之和为17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数?(2)有一个三位数,百位上的数字是

44、1,若把1放在最后一位上,而另两个数字的顺序不变,则所得的新数比原数大234,求原三位数。(3)一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.若将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9, 0b9, 0c9)则这个三位数表示为:100a+10b+c。(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。教学后记教学内容63

45、实践与探索课型 新授课课时本课(节)第5-6课时总第13课时(本学期通排课时数)教学目标1、 通过学习列方程解决实际问题,进一步感知数学在生活中的作用;2、 通过分析追及问题中的数量关系,从而建立方程解决实际问题。进一步发展分析问题,解决问题的能力;3、 在合作与交流中学会肯定自己和倾听他人意见。教学重点找出追及问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题。教学难点找等量关系。学情简析本班学生接受知识的能力较慢,关键是要让他们自己学会分析,找出等量关系,列出方程。突破重难点策略本班学生接受知识的能力较慢,关键是要让他们自己学会分析,找出等量关系,列出方程。课程资源出处华师版

46、教学过程共案(教学流程、作业、板书等)个案(增删改评)一、 创设情境问题:例1:小明每天早上要在7:50之前赶到距家1000米的学校上学。小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书。于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远? 分析:当爸爸追上小明时,两人所行距离相等。在解决这个问题时要抓住这个等量关系。(引导学生画出线路图) 80x5 80x 180x相等关系:爸爸走的路程=小明走5分钟的路程 + 小明走x分钟的路程= 小明走的总路程爸爸所用的时间 = 小明所用总时间 5分钟二、 练

47、习 1 甲、乙两人从相距为180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时.经过多少时间两人相遇?分析 什么叫相向而行、同向而行?路程、时间与速度之间有怎样的数量关系?.A,B两地间路程是哪几段路程之和?摩托车所走路程自行车所走路程180千米自行车所走的路程+摩托车所走的路程=180千米.方程能列出来吗?变题一 相遇后经过多少时间乙到达A地? 变题二 如果甲先行1时后乙才出发,问甲再行多少时间与乙相遇?自行车走1时摩托车走x时自行车走x时180千米例2 甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿

48、同一条路线相向匀速行驶.出发后经3时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1时乙到达A地.问甲、乙行驶的速度分别是多少?变题 相遇后经过多少时间甲到达B地?设甲的速度为千米/时,题目中所涉及的有关数量及其关系可以用下表表示:相遇前相遇后速度时间路程速度时间路程甲333+90乙33+9013相遇前甲行驶的路程+90=相遇前乙行驶的路程;相遇后乙行驶的路程 = 相遇前甲行驶的路程.解 设甲行驶的速度为千米/时,则相遇前甲行驶的路程为3千米,乙行驶的路程为(3+90)千米,乙行驶的速度为千米/时,由题意,得. 解这个方程,得=15.检验:=15适合方程,且符合题意.将=15代入,得=4

49、5.答:甲行驶的速度为15千米/时,乙行驶的速度为45千米/时.想一想 如果设乙行驶的速度为千米/时,你能列出有关的方程并解答吗?三、议一议:1育红学校七年级学生步行到郊外旅行。(1)班学生组成前队,步行速度为4千米时,(2)班学生组成后队,速度为6千米时。前队出发一小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米时。根据上面的事实提出问题,并尝试解答。2 甲乙两人赛跑,甲的速度是8米/秒,乙的速度是5米/秒,如果甲从起点往后退20米,乙从起点处向前进10米,问甲经过几秒钟追上乙?四、小结:路程相等 时间相等五、作业:练习册行程问题:(1)

50、行程问题中的三个基本量及其关系: 路程=速度时间。 (2)基本类型有 相遇问题; 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。 (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。行船问题:顺水航速=静水船速+水流速度, 逆水航速=静水船速-水流速度 。例. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?分析:等量关系:顺水航行距离=逆水航行距离教学后记教学内容6实践与探索课型 新授课课时本课(节)第7-8课时总第15课时(本学期通排课时数)教学目标1、能根据实际问题中的等量关系列出方程,掌握配套问题;2、培养学生分析问题,解决问题的能力.教学重点分析实际问题,根据实际问题列出一元一次方程,并利用“去括号”法则解决此类实际问题.教学难点依据实际问题,列出一元一次方程.学情简析本班学生接受知识的能力较慢,关键是要让他们自己学会分析,找出等量关系,列出方程。突破重难点策略本班学生接受知识的能力较慢,关键是要让他们自己学会分析,找出等量关系,列出方程。课程资源出处华师版教学过程共案(教学流程、作业、板书等)个案(增删改

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论