下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十二章 22.3.1实际问题与二次函数(一)知识点1:利润最大问题1.在现实生活中常常遇到一类求最大(小)值的问题.如在产品的营销过程中何时获得最大利润;在生产中如何获得最大的产值以及怎样获得最好的效果等.这些问题都可以转化为二次函数问题,利用二次函数的性质加以解决.2.解销售中最大利润问题的步骤:(1)利用应用题中的已知条件和学过的有关数学公式列出等量关系;(2)把等量关系转化为二次函数的解析式;(3)求二次函数的最大值或最小值.知识点2:面积最大问题1.几何图形中的二次函数问题常见的有:几何图形中面积的最值、用料的最佳方案等.2.利用平面几何图形的有关条件和性质建立关于几何图形面积的二
2、次函数解析式,并利用二次函数的图象和性质确定最大或最小面积.3.求几何图形面积的常见方法有:利用几何图形的面积公式求出几何图形的面积;利用几何图形面积的和或差求几何图形的面积;利用相似比求几何图形的面积等.4.解决面积问题的一般步骤:(1)利用题目中的已知条件和学过的有关数学公式列出等量关系;(2)把等量关系转化为二次函数的解析式;(3)求二次函数的最大值或最小值.拓展提高:在处理复杂图形面积时常用的方法是:把复杂的几何图形进行分割求和.考点1:利用二次函数求最大利润问题【例1】李经理按市场价格10元/千克在某地收购了2 000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5
3、元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数解析式;(2)李经理想获得利润22 500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?解:(1)由题意得y与x之间的函数解析式为:y=(10+0.5x)(2 000-6x)=-3x2+940x+20 000(1x110,且为整数).(2)由题意得:-3x2+940x+20
4、 000-102 000-340x=22 500,解方程得:x1=50,x2=150(不合题意,舍去).答:李经理想获得利润22 500元,需将这批香菇存放50天后出售.(3)设最大利润为W元,由题意得W=-3x2+940x+20 000-102 000-340x=-3(x-100)2+30 000.0100110,当x=100时,W取得最大值,其最大值为30 000.答:存放100天后,出售这批香菇可获得最大利润,最大利润是30 000元.点拨:(1)存放x天后,香菇的市场价格为(10+0.5x)元/千克,此时香菇损坏6x千克,还可出售的香菇有(2 000-6x)千克,因此y=(10+0.5
5、x)(2 000-6x).(2)销售总金额为(10+0.5x)(2 000-6x)元,收购成本为(102 000)元,各种费用为340x元,由利润=销售总金额-收购成本-各种费用,可得方程-3x2+940x+20 000-102 000-340x=22 500.(3)由二次函数的最大值可得结果.考点2:利用二次函数求面积的最大值【例2】星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30 m的篱笆围成.已知墙长为18 m,如图所示,设这个苗圃园垂直于墙的一边的长为x m.(1)若平行于墙的一边的长为y m,直接写出y与x之间的函数解析式及其自变量x的取值范围;(2)
6、垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?并求出这个最大值;(3)当这个苗圃园的面积不小于88 m2时,试结合函数图象,直接写出x的取值范围.解:(1)y=30-2x(6x15).(2)设矩形苗圃园的面积为S m2,则S=xy=x(30-2x)=-2x2+30x.S=-2(x-7.5)2+112.5.由(1)知,6x15,当x=7.5时,S取得最大值,S最大值=112.5.即当矩形苗圃园垂直于墙的一边的长为7.5 m时,这个苗圃园的面积最大,最大值为112.5.(3)函数S=-2(x-7.5)2+112.5(6x15)的图象如图所示,结合图象,当这个苗圃园的面积不小于88 m2时,x的取值范围是6x11.点拨:因为0y18,所以030-2x18,所以6x15,画出函数S=-2(x-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年潍坊辅警协警招聘考试真题含答案详解(黄金题型)
- 2025年秦皇岛辅警招聘考试题库附答案详解(夺分金卷)
- 2025年锦州辅警协警招聘考试真题含答案详解(达标题)
- 2025年营口辅警招聘考试题库附答案详解ab卷
- 2025年淄博辅警协警招聘考试备考题库含答案详解(培优)
- 2025年金华辅警招聘考试真题附答案详解(典型题)
- 2025年玉溪辅警招聘考试真题附答案详解(培优b卷)
- 2025年莆田辅警招聘考试题库附答案详解(精练)
- 2025上海市的加工合同
- 2025年淮安辅警招聘考试真题含答案详解(夺分金卷)
- 运用HFMEA品管工具优化标本采集流程管控风险院品质管理获奖案例(内科病区护理部检验科信息科后勤部门)
- 印刷机保养点检记录表
- 美甲美睫运营方案
- 气瓶基础知识及安全附件
- 2024水利水电工程模袋砂围堰技术规范
- 灿华环保科技12万吨废塑料资源循环利用生产基地项目环评报告
- 大型活动安保服务投标方案
- 《好脏的哈利》绘本故事
- GB/T 20490-2023钢管无损检测无缝和焊接钢管分层缺欠的自动超声检测
- 常见疑似预防接种异常反应诊治原则课件
- 动火证施工现场动火证申请书
评论
0/150
提交评论