



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.4.1平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理垂直的问题;4.掌握向量垂直的条件.教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学过程:一、复习引入:(1)两个非零向量夹角的概念:已知非零向量与,作,则()叫与的夹角.说明:(1)当时,与同向;(2)当时,与反向;(3)当时,与垂直,记;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0q180(2)两向量共线的判定(3)练习 1.若a=(2,3),b=(4,-1+
2、y),且ab,则y=( C )A.6 B.5 C.7 D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( B )A.-3 B.-1 C.1 D.3(4)力做的功:W = |F|s|cosq,q是F与s的夹角.二、讲解新课:1平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量|a|b|cosq叫与的数量积,记作ab,即有ab = |a|b|cosq,().并规定0向量与任何向量的数量积为0.探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个向量的数量积与实数乘向量的积有什么区别?(1)两个向量的数量积是一个实数,
3、不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积ab,而ab是两个向量的数量的积,书写时要严格区分.符号“ ”在向量运算中不是乘号,既不能省略,也不能用“”代替.(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若a0,且ab=0,不能推出b=0.因为其中cosq有可能为0.(4)已知实数a、b、c(b0),则ab=bc a=c.但是ab = bc a = c 如右图:ab = |a|b|cosb = |b|OA|,bc = |b|c|cosa = |b|OA| ab = bc 但a c (5)在实数中,有(ab)c = a(
4、bc),但是(ab)c a(bc) 显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.2“投影”的概念:作图 定义:|b|cosq叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当q为锐角时投影为正值; 当q为钝角时投影为负值; 当q为直角时投影为0;当q = 0时投影为 |b|; 当q = 180时投影为 -|b|.3向量的数量积的几何意义:数量积ab等于a的长度与b在a方向上投影|b|cosq的乘积.探究:两个向量的数量积的性质:设a、b为两个非零向量,1、ab ab = 02、当a与b同向时,ab = |a|b|; 当a与b反向时,ab = -|a|
5、b|. 特别的aa = |a|2或 |ab| |a|b| cosq = 探究:平面向量数量积的运算律1交换律:a b = b a证:设a,b夹角为q,则a b = |a|b|cosq,b a = |b|a|cosq a b = b a2数乘结合律:(a)b =(ab) = a(b)证:若 0,(a)b =|a|b|cosq, (ab) =|a|b|cosq,a(b) =|a|b|cosq,若 0,(a)b =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq,(ab) =|a|b|cosq,a(b) =|a|b|cos(p-q) = -|a|b|(-cosq) =
6、|a|b|cosq.3分配律:(a + b)c = ac + bc 在平面内取一点O,作= a, = b,= c, a + b (即)在c方向上的投影等于a、b在c方向上的投影和,即 |a + b| cosq = |a| cosq1 + |b| cosq2 | c | |a + b| cosq =|c| |a| cosq1 + |c| |b| cosq2, c(a + b) = ca + cb 即:(a + b)c = ac + bc说明:(1)一般地,()()(2),0(3)有如下常用性质:,()()三、讲解范例:例1证明:()例2已知|a|=12, |b|=9,求与的夹角。例3已知|a|=6, |b|=4, a与b的夹角为60o求:(1)(a+2b)(a-3b). (2)|a+b|与|a-b|. ( 利用 ) 例4已知|a|=3, |b|=4, 且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直. 四、课堂练习:1P106面1、2、3题。 2下列叙述不正确的是( )A. 向量的数量积满足交换律 B. 向量的数量积满足分配律C. 向量的数量积满足结合律 D. ab是一个实数3|a|=3,|b|=4,向量a+b与a-b的位置关系为( )A.平行 B.垂直 C.夹角为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届沈阳市铁西区英语七年级第二学期期末质量检测试题含答案
- 2025年重庆市巴南区八年级英语第二学期期末统考试题含答案
- 网络客户服务试题及答案
- 土建工程师试题及答案
- 2025年企业间商业汇票贴现协议范本
- 2025年夫妻财产分割协议范本
- 2025年联盟方共同策划信息网络安全技术提升协议
- 2025年仓储租赁协议修订与完善建议
- 2025年双方协议离婚相关规定
- 2025年民法典协议离婚程序解析
- 师带徒培养方案范文
- 初中语文组知识讲座
- 办公用品项目实施计划
- 非肌层浸润性膀胱癌诊治中的几个问题
- 电厂班组安全教育课件
- PDCA降低护士针刺伤发生率
- 直播话术完整版范本
- NB-T 11076-2023 高压交流故障电流限制器通用技术规范
- 劳务派遣应急预案(纯方案)
- 政府专职消防员(文职雇员)应聘登记表
- 创业公司预算表格式
评论
0/150
提交评论