




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,第一章,二、 无穷大,三 、 无穷小与无穷大的关系,一、 无穷小,第四节,机动 目录 上页 下页 返回 结束,无穷小与无穷大,当,一、 无穷小,定义1 . 若,时 , 函数,则称函数,例如 :,函数,当,时为无穷小;,函数,时为无穷小;,函数,当,为,时的无穷小 .,时为无穷小.,机动 目录 上页 下页 返回 结束,说明:,除 0 以外任何很小的常数都不是无穷小 !,因为,当,时,显然 C 只能是 0 !,C,C,时 , 函数,(或 ),则称函数,为,定义1. 若,(或 ),则,时的无穷小 .,机动 目录 上页 下页 返回 结束,其中 为,时的无穷小量 .,定理 1 . ( 无穷小与函数极限
2、的关系 ),证:,当,时,有,对自变量的其它变化过程类似可证 .,机动 目录 上页 下页 返回 结束,二、 无穷大,定义2 . 若任给 M 0 ,一切满足不等式,的 x , 总有,则称函数,当,时为无穷大,使对,若在定义中将 式改为,则记作,(正数 X ) ,记作,总存在,机动 目录 上页 下页 返回 结束,注意:,1. 无穷大不是很大的数, 它是描述函数的一种状态.,2. 函数为无穷大 , 必定无界 . 但反之不真 !,例如, 函数,当,但,不是无穷大 !,机动 目录 上页 下页 返回 结束,例 . 证明,证: 任给正数 M ,要使,即,只要取,则对满足,的一切 x , 有,所以,若,则直线,为曲线,的铅直渐近线 .,渐近线,说明:,机动 目录 上页 下页 返回 结束,三、无穷小与无穷大的关系,若,为无穷大,为无穷小 ;,若,为无穷小, 且,则,为无穷大.,则,(自证),据此定理 , 关于无穷大的问题都可转化为 无穷小来讨论.,定理2. 在自变量的同一变化过程中,说明:,机动 目录 上页 下页 返回 结束,内容小结,1. 无穷小与无穷大的定义,2. 无穷小与函数极限的关系,Th1,3. 无穷小与无穷大的关系,Th2,思考与练习,P41 题1 , 3,P41 题3 提示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025设备抵押合同范本
- 保险的起源和发展保险源于风险的存在课件
- 标志设计项目式教程课件 项目七标志的基础设计
- 《电力市场分析培训-》课件
- 人教部编版 (五四制)一年级上册6 校园里的号令教案配套
- 人教版初中历史与社会七年级上册 1.2《美丽畲乡我的家》 -走进乡村聚落教学设计教学设计
- 人教部编版六年级语文上册《习作例文》配套教案教学设计公开课
- 武汉科技大学《算法分析与设计基础实验语言》2023-2024学年第二学期期末试卷
- 荆州职业技术学院《工程统计学》2023-2024学年第二学期期末试卷
- 上海市华东师大二附中2025届人教A版高中语文试题高三二轮函数的图象与性质测试含解析
- 2025至2030年中国军用仿真(软件)行业发展战略规划及投资方向研究报告
- 乳业大数据分析与消费者洞察-全面剖析
- 2025年北京石景山区高三一模英语高考模拟试卷(含答案详解)
- 土钉墙、喷锚护坡分包合同
- 军队系统反腐倡廉心得体会
- 应急总医院合同制康复医学科工作人员招考聘用高频重点提升(共500题)附带答案详解
- 《消防器材使用教程》课件
- 《小儿静脉穿刺》课件
- DB11-T 212-2024 园林绿化工程施工及验收规范
- 托盘贸易合作合同范例
- 劳动节安全教育家长会
评论
0/150
提交评论