版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学物理方程,讲课内容,一、数学物理方程的基本概念与定义 二、热传导方程的介绍与推导 三、生物热传导方程的介绍,基本概念,数学物理方程: 它们反映了未知函数关于时间的导数和关于空间变量的导数之间的制约关系,同时刻画了物理现象和过程的基本规律,基本概念,偏微分方程: 含有未知函数以及未知函数的某些偏导数的等式,常微分方程: 是求带有导数的方程,比如说y+4y-2=0这样子的,多个变量的微分方程,单变量的微分方程,比如,设u=u(x,y,.)的未知函数,那么关于u的偏微分方程的一般形式,u=u(x,y,.,基本概念,偏微分方程的阶: 出现在偏微分方程中的最高阶偏导数的阶数。 线性偏微分方程: 如果
2、一个偏微分方程对未知函数及它的所有偏导数都是线性的,且它们的系数都仅依赖于自变量的已知函数,非线性方程,基本概念,偏微分方程,设方程的阶数为m,函数u=u(x,y,.)在区域中具有m阶的连续偏导数,且在中满足方程,则称u为区域内方程的解,又称古典解,进一步,如果方程的解u的表达式中含有m个任意函数,则称u是方程的通解或者一般解,基本概念,哈密顿算子,n维拉普拉斯算子,一些典型偏微分方程,关于函数 的n维波动方程是,当n=1时,它描述弦的振动或声波在管中的传播 当n=2时,它描述浅水面上的水波或薄膜的振动 当n=3时,它描述声波或光波在空间中的传播,自变量t表示时间,x=(x1,x2,.,xn)
3、表示n维空间变量。,一些典型偏微分方程,当空间中一个导热体的密度和比热容都是常数时,其温度分布函数u(x,y,z,t)满足三维热传导方程,其中a0为常数,研究粒子的扩散过程时,例如,气体的扩散、液体的渗透以及半导体材料中杂质的扩散,也会遇到类似的方程,一些典型偏微分方程,关于函数 的n维拉普拉斯方程是,应用中非常广泛,该方程可以用来描述无源静电场的电势、引力场、弹性薄膜的平衡位移、稳态热传导问题的温度分布等物理现象,热传导方程,所谓热传导,就是由于物体内部温度分布的不均匀,热量要从物体内温度较高的点流向温度较低的点,物体内部温度的分布状态,热传导方程,无热源情况: 在物体中任取一闭曲面S ,
4、u(x,y,z,t)表示物体在t时刻,M=M(x,y,z)处的温度,根据Fourier热传导定律,在无穷小时段dt内流过的一个无穷小面积dS的热量dQ与时间dt、曲面面积dS以及物体温度u沿曲面dS的外法线n的方向导数 三者成正比,即,热传导方程,对于内任一封闭曲面S,设其所包围的空间区域为V,那么从时刻t1到t2经曲面S流出的热量为,热传导方程,设物体的比热容为c(x,y,z),密度为(x,y,z),则在区域V内,温度由u(x,y,z,t1)到u(x,y,z,t2)所需的热量为,根据热量守恒定律,有,热传导方程,假如函数u(x,y,z,t)关于x,y,z具有二阶连续偏导数,关于t具有一阶连续
5、偏导数,那么由高斯公式得,热传导方程,由于时间间隔t1,t2及区域V是任意的,且被积函数是连续的,因此在任何时刻t,在内任意一点都有,热传导方程,非均匀的各向同性体的热传导方程,如果物体时均匀的,此时k,c,为常数,移项得,三维热传导方程,热传导方程,若考虑物体内有热源,其热源密度为F(x,y,z,t),则有热源的热传导方程为,类似的,当考虑的物体时一根均匀细杆,如果它的侧面绝缘且在同一截面上的温度分布相同,那么温度u只与x,t有关,三维热传导方程变成一维热传导方程,考虑一块薄板的热传导,并且薄板的侧面绝热,则可得二维热传导方程,生物热传导方程,高强度聚集超声(HIFU)已成为对局部肿瘤组织及其他病灶部位进行消融治疗的一种手段,同时成功的治疗往往需要了解治疗部位的组织及其周边血管的热学变化特性,生物传热的基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高层建筑墙面砖施工要点
- 面部护理常见误区解析
- 护理技能提升月度培训
- 护理专业提升与晋升之路探索
- 高架安装课件
- 百日安全无事故课件
- 2025年销售风险管理试题及答案
- 2025年教资招聘语文试卷及答案
- 2026年安全生产工作计划
- 2025年近期模考英语试卷及答案
- 钢筋桁架楼承板专项施工方案
- 非开挖顶管合同范本
- 专家讲座的协议书
- 雨课堂学堂在线学堂云民族学导论专题中央民族大学单元测试考核答案
- 【语文】小学一年级上册期末质量试卷
- 2026元旦班级联欢晚会活动主题班会:星光闪耀迎新夜 课件
- 2025年内蒙古行政执法人员资格认证考试题库真题库及答案
- 急性胰腺炎重症患者白蛋白输注方案
- 《产业经济学》课程论文选题、要求和评分标准
- 中国-东盟贸易投资合作进展报告2024-2025-深圳大学
- 特种设备安全管理制度汇编
评论
0/150
提交评论