版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2柯西中值定理和不等式极限一 柯西中值定理 定理(6.5) 设 、满足(i) 在区间 上连续,(ii) 在 内可导(iii) 不同时为零;(iv) 则至少存在一点 使得 柯西中值定理的几何意义 曲线 由参数方程 给出,除端点外处处有不垂直于 轴的切线,则 上存在一点 P处的切线平行于割线 .。 注意曲线 AB在点 处的切线的斜率为 ,而弦 的斜率为 . 受此启发,可以得出柯西中值定理的证明如下:由于, 类似于拉格朗日中值定理的证明,作一辅助函数 容易验证 满足罗尔定理的条件且 根据罗尔定理,至少有一点 使得 ,即 由此得注2:在柯西中值定理中,取 ,则公式(3)可写成 这正是拉格朗日中值公式,
2、而在拉格朗日中值定理中令 ,则 . 这恰恰是罗尔定理.注3:设 在区间 I上连续,则 在区间 I上为常数 , . 三、利用拉格朗日中值定理研究函数的某些特性1、利用其几何意义要点:由拉格朗日中值定理知:满足定理条件的曲线上任意两点的弦,必与两点间某点的切线平行。可以用这种几何解释进行思考解题: 例1:设 在 (a ,b) 可导,且在 a,b 上严格递增,若,则对一切有 。证明:记A(),对任意的x,记C(),作弦线AB,BC,应用拉格朗日中值定理,使得分别等于AC,BC弦的斜率,但因严格递增,所以,从而注意到,移项即得, 2、利用其有限增量公式要点:借助于不同的辅助函数,可由有限增量公式进行思
3、考解题:例2:设上连续,在(a,b)内有二阶导数,试证存在使得证:上式左端作辅助函数则上式=,=,其中 3、作为函数的变形要点:若在a,b上连续,(a,b)内可微,则在a,b上 (介于与之间)此可视为函数的一种变形,它给出了函数与导数的一种关系,我们可以用它来研究函数的性质。例3 设在上可导,并设有实数A0,使得在上成立,试证证明 :在0,上连续,故存在 使得 =M于是M=A。故 M=0,在0, 上恒为0。用数学归纳法,可证在一切( i=1,2,)上恒有=0, 所以=0, 。利用柯西中值定理研究函数的某些特性 1. 证明中值点的存在性: 例 1 设函数在区间 上连续, 在 内可导, 则 , 使
4、得.证 在Cauchy中值定理中取 .例2设函数在区间 上连续, 在 内可导, 且有.试证明: .2.证明恒等式: 例3证明: 对, 有 .例4设函数和可导且又 则 .证明 . 例5设对, 有 , 其中是正常数. 则函数是常值函数. (证明 ).3.证明不等式: 例6证明不等式: 时, .例7证明不等式: 对,有.4.证明方程根的存在性: 证明方程 在 内有实根.例8证明方程 在 内有实根.四 、小结本节课重点是拉格朗日中值定理及利用它研究函数的某些特性;难点是用辅助函数解决问题的方法。1 拉格朗日中值定理的内容及证明方法要熟练掌握。微分中值定理主要指拉格朗日中值定理,它的特例是罗尔定理,它的
5、推广是接下来我们要学习的柯西定理和泰勒定理。拉格朗日中值定理是沟通函数及其导数的桥梁,是数学分析的重要定理之一。2 构造辅助函数法是应用微分中值定理的基本方法。实际上,辅助函数法是转化问题的一种重要手段,通过巧妙地数学变换,将一般问题化为特殊问题,将复杂问题化为简单问题,这种论证思想也是数学分析的重要而常用的数学思维的体现。关于如何恰当地构造和选用辅助函数问题,请同学们结合第三部分的题目仔细体会总结。二 不定式的极限 一. 型:定理 6.6 (Hospital法则 ) 若函数 和满足:(i) (ii) 在点 的某空心邻域内而这可导,且;(iii) 可为实数,也可为 )则 ( 证 ) 注意: 若
6、将定理中的x 换成 ,只要相应地求证条件(ii)中的邻域,也可以得到同样的结论。例1 例2 .例3 . ( 作代换或利用等价无穷小代换直接计算. )例4 . ( Hospital法则失效的例 )二.型不定式 极限:定理 6.7 (Hospital法则 ) 若函数 和满足:(i) (ii) 在点的某右邻域内二这可导,且;(iii) 可为实数,也可为 )则 例5.例6 .註: 关于当时的阶. x=5:0.1:50; y1=log(x);y2=x.(1/2); plot(x,y1,b,x,y2,m) 右图看出 高于 clf, x=1:0.1:5; y1=exp(x); y2=x.2;plot(x,y1,b,x,y2,m) 右图看出 高于 注意1 不存在,并不能说明 不存在(为什么?)注意2 不能对任何比式极限都按洛必达法则来求,首先要注意它是不是不定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物标志物在药物临床试验中的药物研发策略-1
- 深度解析(2026)《GBT 20484-2017冷空气等级》
- 高效备战元数据标注员面试题库及答案
- 审计专员招聘面试题库及答案解析
- 测试开发工程师面试技巧与案例分析含答案
- 宁波梅山新区经济发展局工作人员绩效考核含答案
- 财务分析师面试全攻略与问题解析
- 深度解析(2026)《GBT 19346.2-2017非晶纳米晶合金测试方法 第2部分:带材叠片系数》
- 深度解析(2026)《GBT 19247.2-2003印制板组装 第2部分 分规范 表面安装焊接组装的要求》
- 公关总监岗位能力考试题库含答案
- 学堂在线 大数据与城市规划 期末考试答案
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 00和值到27和值的算法书
- 冠脉支架内血栓的防治策略课件
- 青海湖的无边湖光
- 华文慕课计算机网络原理和因特网(北京大学)章节测验答案
- 员工激励管理方案模板
- GB/T 5008.2-2005起动用铅酸蓄电池产品品种和规格
- GB/T 27696-2011一般起重用4级锻造吊环螺栓
- GB/T 25000.10-2016系统与软件工程系统与软件质量要求和评价(SQuaRE)第10部分:系统与软件质量模型
- GB/T 21470-2008锤上钢质自由锻件机械加工余量与公差盘、柱、环、筒类
评论
0/150
提交评论