


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数的应用_1、利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义. 2、体验指数函数等与现实世界的密切联系及其在刻画现实问题中的作用.一、 解应用题的策略: 特别提醒:解答应用题重点要过三关:(1)事理关:需要读懂题意,知道讲的是什么事件,即需要一定的阅读能力如教材中讲的储蓄问题,要清楚什么是复利,各期的本利和如何变化,即变化规律是什么,只有搞清这些问题,才能准确表达本利和y与利率r及存期x的关系(2)文理关:需把实际问题的文字语言转化为数学的符号语言,以把实际问题抽象为一个函数问题(3)数理关:构建了数学模型后,要正确解
2、答出数学问题,需要扎实的基础知识和较强的数理能力二、解决应用题的一般程序:(1)审题:弄清题意,分清条件和结论,理顺数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将用数学知识和方法得出的结论,还原为实际问题的意义三、几种不同增长的函数模型(1)指数函数模型: yabxc(b0,b1,a0)(2)对数函数模型: ymlogaxn(a0,a1,m0)(3)幂函数模型: yaxnb(a0)类型一 指数函数模型例1:某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市人口总数
3、y(万人)与年份x(年)的函数关系式;(2)计算10年后该城市人口总数(精确到0.1万人);(3)计算大约多少年后该城市人口将达到120万人(精确到1年)(取1.012101.127,log1.0121.2015)解析:(1)1年后该城市人口总数为:y1001001.2%100(11.2%);2年后该城市人口总数为:y100(11.2%)1001.2%(11.2%)100(11.2%)2;3年后该城市人口总数为:y100(11.2%)2100(11.2%)21.2%100(11.2)3;x年后该城市人口总数为:y100(11.2%)x.(2)10年后该城市人口数为:100(11.2%)1011
4、2.7 (万)(3)设x年后该城市人口将达到120万,即100(11.2%)x120,1.012x1.20.xlog1.0121.2015(年)答案:(1)y100(11.2%)x. (2)112.7 (万)(3)15练习1:医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的记录如下表:天数123456病毒细胞个数12481632已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡但注射某种药物,可杀死其体内该病毒细胞的98%.(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天,lg
5、20.3010)(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)答案:(1)第一次最迟应在第27天注射该种药物(2)第二次最迟应在第33天注射药物练习2:已知光线每通过一块玻璃板,光线的强度就失掉10%,要使通过玻璃板的光线的强度减弱到原来强度的以下,则至少需要重叠玻璃板数为()A8块 B9块 C10块 D11块答案:D类型二 对数函数模型例2:燕子每年秋天都要从北方飞向南方过冬研究燕子的科学家发现,2岁燕子的飞行速度可以表示为函数v5log2,单位是m/s,其中Q表示燕子的耗氧量(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速
6、度是多少?解析:(1)当燕子静止时,它的速度v0.代入题中所给公式可得05log2,解得Q10,即燕子静止时的耗氧量是10个单位(2)将耗氧量Q80代入题中所给公式得v5log25log2815 (m/s),即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.答案:(1)10 (2)15 m/s.练习1:大西洋鲑鱼每年都要逆流而上2 000 m,游回产地产卵研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数ylog3,单位是m/s,其中x表示鲑鱼的耗氧量的单位数(1)当一条鲑鱼的耗氧量是8 100个单位时,它的游速是多少?(2)计算一条鲑鱼静止时耗氧量的单位数;(3)若鲑鱼A的游速大于鲑
7、鱼B的游速,问这两条鲑鱼谁的耗氧量较大?并说明理由答案:(1)2 m/s. (2)100 (3)A练习2:某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物已知该动物繁殖数量y(只)与引入时间x(年)的关系为yalog2(x1),若该动物在引入一年后的数量为100,则到第7年它们的数量为()A300 B400 C600 D700答案: A类型三 函数模型的选取例3:某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份数x的关系,根据已有的知识经验模拟函数可选用二次函数
8、或函数yabxc(其中a、b、c为常数),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明你的理由解析:设y1f(x)px2qxr (p0),则,解得p0.05,q0.35,r0.7,f(4)0.05420.3540.71.3.再设y2g(x)abxc,则,解得a0.8,b0.5,c1.4,g(4)0.80.541.41.35,经比较可知,用y0.8(0.5)x1.4作为模拟函数较好答案:y0.8(0.5)x1.4练习1:某公司拟投资100万元,有两种投资方案可供选择:一种是年利率10%,按单利计算,5年后收回本金和利息;另一种是年利率9%,按每年复利一次计算,
9、5年后收回本金和利息哪一种投资更有利?这种投资比另一种投资5年后可多得利息多少万元(结果精确到0.01万元)?答案:按复利投资更划算,利息多得3.86万练习2:某山区为加强环境保护,绿色植被的面积每年都比上一年增长10.4%,那么,经过x年,绿色植被面积可以增长为原来的y倍,则函数yf(x)的图象大致为() 答案:D1、某工厂第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则下列结论中正确的是()Ax22%Bx22%Cx22%Dx的大小由第一年产量确定答案:B2、某种细菌在培养过程中,每15 min分裂一次(由1个分裂成2个),则这种细菌由1个繁殖成212个需经过()A
10、12 hB4 hC3 hD2 h答案: C3、某工厂生产两种成本不同的产品,由于市场销售发生变化,A产品连续两次提价20%,B产品连续两次降价20%,结果都以23.04元出售,此时厂家同时出售A、B产品各1件,盈亏情况是()A不亏不赚 B亏5.92元C赚5.92元 D赚28.96元答案:B4、某企业的产品成本前两年平均每年递增20%,经过改进技术,后两年的产品成本平均每年递减20%,那么该企业的产品成本现在与原来相比()A不增不减 B约增8%C约增5% D约减8%答案:D5、(20142015学年度江苏泰州三中高一上学期期中测试)为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中
11、,室内每立方米空气中的含药量y (mg)与时间t (h)成正比;药物释放完毕后,y与t的函数关系式为yta(a为常数),如图所示根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (mg)与时间t (h)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25 mg以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少小时后,学生才能回到教室?答案:(1)y.(2)0.6小时_基础巩固1据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2010年的冬季冰雪覆盖面积为m,从2010年起,经过x年后,北冰洋冬季冰雪覆
12、盖面积y与x的函数关系式是 ()Ay0.95m By(10.05)mCy0.9550xm Dy(10.0550x)m答案:A2某种型号的手机自投放市场以来,经过两次降价,单价由原来的2 000元降到1 280元,则这种手机平均每次降价的百分率是()A10% B15% C18% D20%答案:D3抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽(参考数据:lg20.301 0)()A6次 B7次 C8次 D9次答案:C4某商品的市场需求量y1(万件)、市场供应量y2(万件)与市场价格x(元/件)分别近似地满足关系:y1x70,y22x20.y1y2时的市场价格称
13、为市场平衡价格,则市场平衡价格为_元/件答案:305某池塘中野生水葫芦的面积与时间的函数关系图象如图所示假设其函数关系为指数函数,并给出下列说法:此指数函数的底数为2;在第5个月时,野生水葫芦的面积就会超过30 m2;野生水葫芦从4 m2蔓延到12 m2只需1.5个月;设野生水葫芦蔓延至2 m2、3 m2、6 m2所需的时间分别为t1、t2、t3,则有t1t2t3;野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度其中,正确的是_(填序号)答案:能力提升6如图,由桶1向桶2输水,开始时,桶1有a L水,t min后,剩余水y L满足函数关系yaent,那么桶2的水就是yaaent.假设经过5 min,桶1和桶2的水相等,则再过_min,桶1中的水只有L.答案:107一种产品的成本原来是a元,在今后m年内,计划使成本平均每年比上一年降低p%,则成本y随经过的年数x变化的函数关系为_答案:ya(1p%)x(xN*,且xm)8某乡镇目前人均一年占有粮食360 kg,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后人均一年占有y kg粮食,求函数y关于x的解析式答案: y360()x.9. 对于5年可成材
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CIQA 89-2024农村电商运营职业能力培养与评价规范
- T/CACE 0132-2024改性磷石膏混合料填筑应用技术规程
- T/CI 465-2024质量分级及“领跑者”评价要求多晶硅
- 商品砼运输承包合同10篇
- 幼儿园园长授权责任协议书9篇
- 食堂规范化整治项目施工合同3篇
- 农村转让土地的合同3篇
- 2025年温州市商品销售合同4篇
- 履约担保委托保证合同律师拟定版本5篇
- 绿化运营维护合同5篇
- 心内科工作流程
- 中考数学总复习第四章第20课时解直角三角形课件
- 低空经济产业园商业计划书
- 2025中国铁路济南局集团招聘生60人高频重点提升(共500题)附带答案详解
- 2024-2030年中国内河码头产业前景预测规划研究报告
- 2025年上海市各区高三语文一模试题汇编之文言文二阅读(含答案)
- 【读后续写】高中英语读后续写讲评:100 dollars 名师课件-周媚
- 《公共事业管理概论》课程教学大纲
- 2024版质量管理培训
- GB/T 44569.1-2024土工合成材料内部节点强度的测定第1部分:土工格室
- 2023-2024年福建省普通高中学生学业基础会考化学试题汇编
评论
0/150
提交评论