26.2 用函数的观点看一元二次方程(1)_第1页
26.2 用函数的观点看一元二次方程(1)_第2页
26.2 用函数的观点看一元二次方程(1)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、临夏县三角中学课时计划 一、教学内容 26.2 用函数的观点看一元二次方程(1) 二、教学目标 1通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。 2使学生能够使用二次函数及其图象、性质解决实际问题,提升学生用数学的意识。3进一步培养学生综合解题水平,渗透数形结合思想。 三、重点难点:重点:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够使用二次函数及其图象、性质去解决实际问题是教学的重点。难点:进一步培养学生综合解题水平,渗透数形结合的思想是教学的难点四、教具 三角尺 五、教学设想:回顾旧知,通过对比归纳二次函数一般形式的图像、性质六、教学过程(一)、探

2、索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。连喷头在内,柱高为0.8m。水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是yx22x。(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?教学方法:1让学生讨论、交流,如何将文学语言转化为数学语言,得出问题(1)就是求函数yx22x最大值,问题(2)就是求如图(2)B点的横坐标;2学生解答,教师巡视指导

3、;3让一两位同学板演,教师讲评。问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB1.6m时,涵洞顶点与水面的距离为2.4m。这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?教学方法:1教师分析:根据已知条件,要求ED的宽,只要求出FD的长度。在如图(3)的直角坐标系中,即只要求出D点的横坐标。因为点D在涵洞所成的抛物线上,又由已知条件可得到点D的纵坐标,所以利用抛物线的函数关系式能够进一步算出点D的横坐标。2让学生完成解答,教师巡视指导。3教师分析存有的问题,书写解答过程。问题3:画出函数x2x0的图象,根据图象回答下列问题。(1)图象与x轴交点的坐标是什么

4、;(2)当x取何值时,y0?这里x的取值与方程x2x0有什么关系?(3)你能从中得到什么启发?教学要点:1先让学生回顾函数yax2bxc图象的画法,按列表、描点、连线等步骤画出函数yx2x的图象。2教师巡视,与学生合作、交流。3教师讲评,并画出函数图象,如图(4)所示。4教师引导学生观察函数图象,回答(1)提出的问题,得到图象与x轴交点的坐标分别是(,0)和(,0)。5让学生完成(2)的解答。教师巡视指导并讲评。6对于问题(3),教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,达成共识:从“形”的方面看,函数yx2x的图象与x轴交点的横坐标,即为方程x2x0的解;从“数”的方面看,

5、当二次函数yx2x的函数值为0时,相对应的自变量的值即为方程x2x0的解。更一般地,函数yax2bxc的图象与x轴交点的横坐标即为方程ax2bxc0的解;当二次函数yax2bxc的函数值为0时,相对应的自变量的值即为方程ax2bxc0的解,这个结论反映了二次函数与一元二次方程的关系。(二)、试一试 根据问题3的图象回答下列问题。 (1)当x取何值时,y0?当x取何值时,y0? (当x时,y0;当x或x时,y0) (2)能否用含有x的不等式来描述(1)中的问题? (能用含有x的不等式采描述(1)中的问题,即x2x0的解集是什么?x2x0的解集是什么?) 想一想:二次函数与一元二次不等式有什么关系

6、? 让学生类比二次函数与一元二次不等式方程的关系,讨论、交流,达成共识: (1)从“形”的方面看,二次函数yax2bJc在x轴上方的图象上的点的横坐标,即为一元二次不等式ax2bxc0的解;在x轴下方的图象上的点的横坐标即为一元二次不等式ax2bxc0的解。 (2)从“数”的方面看,当二次函数yax2bxc的函数值大于0时,相应的自变量的值即为一元二次不等式ax2bxc0的解;当二次函数yax2bxc的函数值小于0时,相应的自变量的值即为一元二次不等式ax2bcc0的解。这一结论反映了二次函数与一元二次不等式的关系。(三)、课堂练习: (四)、小结: 1通过本节课的学习,你有什么收获?有什么困惑?2若二次函数yax2bxc的图象与x轴无交点,试说明,元二次方程ax2bxc0和一元二次不等式ax2bxc0、ax2bxc0的解的情

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论