改性水性聚氨酯乳液的研究.doc_第1页
改性水性聚氨酯乳液的研究.doc_第2页
改性水性聚氨酯乳液的研究.doc_第3页
改性水性聚氨酯乳液的研究.doc_第4页
改性水性聚氨酯乳液的研究.doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 改性水性聚氨酯技术进展趋势及前景 聚氨酯材料具有良好的物理机械性能、优异的耐候性、弹性及软硬度随温度变化不大等优点。在许多领域都得到了广泛的应用。随着环保法律法规的健全和人们环保意识的加强,聚氨酯材料的水性化日益受到重视,水性聚氨酯的研究与开发具有重要的应用价值。为了更好的提高水性聚氨酯的综合性能,扩大应用范围,近年来改性水性聚氨酯研究已成为一大热点,许多研究学者进行了深入的研究,改性方法也日新月异。目前,改性方法大致可分为4种:(1)改进单体和合成工艺;(2)添加助剂;(3)实施交联;(4)优化复合。其中以优化复合最为引人注目。根据改性剂不同,水性聚氨酯乳液的改性主要有:环氧树脂改性、聚硅

2、氧烷改性、丙烯酸改性、纳米材料复合改性等。 1、环氧树脂改性水性聚氨酯 1.1环氧树脂的特点 环氧树脂(EP)具有许多优良的性能,如易固化、机械强度高、粘附力强、成型收缩率低、化学稳定性好、电绝缘性好、成本低,还具备高模量、高强度和热稳定性好等特点,早已成为应用广泛的热固性塑料,在机械、电子、涂料等领域发挥着日益重要的作用。但是,环氧树脂也存在一些突出缺点,如韧性差,抗冲击强度低,固化后质脆,从而限制了其在某些领域内的应用。环氧树脂具有仲羟基和环氧基,可以和异氰酸酯反应。经环氧树脂改性的水性聚氨酯其力学性能、粘接强度、耐水、耐溶剂等性能都会得到提高。 1.2环氧改性水性聚氨酯制备方法 环氧改性

3、水性聚氨酯的制备方式主要有2种:即机械共混法和共聚法。共混法一般是先合成聚氨酯预聚体,再将适量的环氧树脂均匀分散在预聚体中,然后对混有环氧树脂的预聚体进行乳化,最终得到环氧树脂改性的水性聚氨酯乳液。机械共混法制得的环氧树脂改性水性聚氨酯乳液中,环氧树脂与聚氨酯之间没有化学键的结合,环氧树脂不具亲水性,而聚氨酯链中的羧基及聚醚链段对水具有亲和性,当两者在水中乳化时,环氧树脂被包覆在聚氨酯链中,有可能会形成一定的核-壳结构。共聚法主要是利用环氧树脂链两端的环氧基优先与聚氨酯预聚体进行共聚反应,其次是环氧树脂分子上的羟基参与其反应制成预聚体,再乳化于水。另外存在氨基甲酸酯基与环氧基发生开环反应,此方

4、法为交联反应。 环氧树脂的加料工艺方式主要有3种:其一,环氧树脂与聚醚多元醇在反应初期加入到反应器;其二,环氧树脂与小分于扩链剂在反应中期一起加入到反应器;其三,环氧树脂与亲水扩链剂在反应后期一起加入到反应器中。 1.3环氧改性水性聚氨酯的应用及研究进展 环氧改性水性聚氨酯在胶粘剂、涂料上已有应用报道。郭俊杰等合成了用于粘接复合薄膜的环氧树脂改性水性聚氨酯胶粘剂,改性后的胶粘剂对多种复合薄膜都表现出较强的粘接性能,剥离强度进一步提高,外观、贮存稳定性良好,且在固体质量分数下降为30%后仍然具有较强的粘接性能。安徽大学曾通过环氧树脂与聚氨酯的接枝反应,合成了环氧改性聚氨酯乳液,用所得的乳液配制地

5、板清漆气味小,漆膜光泽好,有一定的弹性,1天后实干,使用效果良好。 姜守霞等研究了环氧树脂在水性聚氨酯乳液中含量对性能的影响,研究发现加入环氧树脂后,产品的耐水性有明显的提高,随着环氧树脂含量的增加,硬度也增加,粘度呈上升趋势。 罗建光等发现:共聚法比机械共混法难于得到稳定的乳液。其原因可能是共聚法由于EP在预聚阶段生成了部分支链结构,使预聚体的粘度增大,影响了乳化;另外,共聚法制得的乳液中环氧基团在三乙胺的催化下开环,形成交联物而沉淀。2、有机硅改性水性聚氨酯 2.1有机硅的特点 有机硅聚合物分子结构中含有元素硅,是属于半有机、半无机结构的高分子化合物,它们兼具有机化合物和无机化合物的特性,

6、具有耐低温、耐气候老化、电绝缘、耐臭氧、憎水、难燃、生理惰性等许多优异性能。有机硅聚合物最显著的特点就是耐氧化性和低表面能,耐氧化性就是耐候性好,而低表面能会产生优良的疏水性。有机硅产品通常是指聚硅氧烷系列,包括非活性聚硅氧烷、活性聚硅氧烷、环氧基、羟基、氨基等改性聚硅氧烷。有机硅改性水性聚氨酯可以弥补水性聚氨酯耐水解性稍差的缺陷,使改性水性聚氨酯表现出良好的憎水性、表面富集性、低温柔顺性和优良的生物相容性。 2.2有机硅改性方法 有机硅改性水性聚氨酯同样是共混改性和共聚改性2种方法。共混可以通过水性聚氨酯乳液和聚硅氧烷乳液物理共混来实现。聚氨酯可以改善聚硅氧烷乳液的耐油性,而聚硅氧烷乳液可以

7、改善水性聚氨酯的耐水和耐溶剂性能,两者共混可获得取长补短的效果。但由于乳化剂的存在,共混改性对最终成膜的性能有负面影响,共混改性仅仅是简单的机械混合,无化学键形成,硅油易于迁移,造成硅感时效短。共聚改性是有机硅改性水性聚氨酯最常用的方法,通过两端带有反应性官能团的聚硅氧烷低聚物(如羟基硅油、氨基硅油、氨基或烷氧基封端的硅烷偶联剂等)与多异氰酸酯经逐步加成、聚合而制得嵌段共聚物。 有机硅共聚改性水性聚氨酯制备方法主要有合成与扩链2种不同的方法。合成法是在合成预聚体过程中将羟基硅油或氨基硅油引入聚氨酯链段中。羟基硅油的反应活性适中,合成过程反应平稳,比氨基硅油好控制。扩链法是指在预聚体乳化的过程中

8、引入氨基硅油扩链。 2.3有机硅改性水性聚氨酯的应用研究进展 有机硅改性水性聚氨酯可广泛应用于涂料工业、皮革工业、印刷工业、纺织工业等领域。 吴明元等用氨丙基聚硅氧烷与聚氨酯预聚体反应生成含硅氧烷的聚氨酯预聚体,通过NaH-SO3封闭NCO基并在水中分散,制得有机硅改性热反应型水性聚氨酯乳液。侯孟华等在无溶剂的条件下,采用扩链的方式制得氨基硅烷偶联剂改性的水性聚氨酯乳液,以此硅烷偶联剂改性的水性聚氨酯乳液制得的木器涂料,具有优良的耐水性、附着力和力学性能。刘鸿志等将TDI加到聚醚二元醇和端羟基有机硅单体的混合物中进行反应,生成的预聚体用1,4-丁二醇进行扩链反应,再经DMPA亲水扩链、中和、乳

9、化,合成了有机硅改性聚氨酯乳液,研究表明,有机硅改性的水性聚氨酯材料其耐水性、耐热性和耐低温性有所提高。 3、丙烯酸酯改性水性聚氨酯 3.1丙烯酸酯化合物的特点 丙烯酸酯(PA)具有优异的耐光性、户外曝晒耐久性,即耐紫外光照射不易分解变黄,能持久保持原有的色泽和光泽,有较好的耐酸碱盐腐蚀,极好的柔韧性和最低的颜料反应性。 丙烯酸酯改性水性聚氨酯(PUA)可以将聚氨酯较高的拉伸强度和抗冲强度、优异的耐磨性与丙烯酸酯树脂良好的附着力、耐候性有机结合,可制备高固含量、低成本以及达到使用要求的水性树脂。 3.2丙烯酸酯改性水性聚氨酯的方法 关于丙烯酸酯改性水性聚氨酯的合成方法有很多介绍,这里仅简述共聚

10、乳液的制备方法。 共聚乳液的制备方法主要有以下几种:(1)PU乳液和PA乳液共混,外加交联剂,形成聚氨酯-丙烯酸酯共混复合乳液;(2)先合成PU聚合物乳液,以此为种子乳液再进行丙烯酸酯乳液聚合,形成具有核-壳结构的PUA复合乳液;(3)2种乳液以分子线度互相渗透,然后进行反应,形成高分子互穿网络的PUA复合乳液。这些方法巧妙地提高了PU和PA的相容性。(4)合成带CC双键的不饱和氨基甲酸酯单体,然后将该大单体和其它丙烯酸酯单体进行乳液共聚,得到PUA共聚乳液。 制备PU分散体和PA乳液的化学原理不同,前者是加成聚合,后者是自由基聚合,因此制备PUA分散体的关键是采用适宜的工艺过程将这两种不同的

11、化学原理结合起来,使其形成具有核-壳复相结构的乳胶粒子。研究表明,为了制备核壳复相结构的高性能PUA分散体,既要采用独特的工艺,能使上述2种聚合机理有机结合起来,又要采用一些特殊的物料。近10多年来,研究者不断开发出适合于制备PUA分散体的新原料、新工艺。 3.3丙烯酸酯改性水性聚氨酯的研究进展 丙烯酸改性水性聚氨酯广泛用于皮革涂饰、涂料、粘合剂、织物涂层、印染等工业领域。谢维斌合成了一种丙烯酸改性水性聚氨酯并用于棉织物涂层,测试涂层棉织物表明,引入丙烯酸甲酯可提高涂层膜抗水性、增加涂层膜拉伸强度、引入丙烯酸羟乙酯有利涂层膜透气性,提高涂层膜伸长率。艾照全等研制一种聚氨酯改性丙烯酸酯为主体的含

12、有多种功能基的水基型系列装潢装饰胶粘剂,可用作高频胶、热合胶和冷粘胶。陈文等合成了水性环氧丙烯酸酯树脂和水性聚氨酯丙烯酸酯,然后配制成具有优秀性能的水性UV固化木地板涂料,该水性UV固化材料具有无毒性、无污染、无刺激和生产安全等优点,在木地板涂料领域有广阔的应用前景。周建军等成功地制备了自交联PUA复合乳液,得到了无疑胶的核-壳结构(PA为核,PU为壳)胶乳,乳液稳定性较好,其做胶使用测试表明,粘接力、耐水性都较好。唐薰等合成了UV固化的水性阴离子型聚氨酯丙烯酸酯。合成的水性固化膜具有良好的附着力、高硬度(6H)、高光泽度(90%)、较高的拉伸强度(29MPa),同时涂膜具有优良的耐水性、耐酸

13、碱性和耐溶剂性,可以取代溶剂型的木地板光固化涂料。 4、有机硅丙烯酸酯双改性水性聚氨酯 将聚氨酯,丙烯酸酯,有机硅氧烷三元结合起来,制备水性材料,它综合了丙烯酸酯、聚氨酯、有机硅3种树脂材料的优点,而且以水作分散介质符合环保的要求。将3种有机地结合在一起,根据不同用途的要求、发挥其协同作用的优势,可以做成有皂或无皂乳液,用作纺织品的涂层剂和皮革涂饰剂。 有机硅丙烯酸酯双改性水性聚氨酯合成方法主要有两种,一种是先合成适量丙烯酸羟乙酯或丙烯酸羟丙酯封端的聚氨酯预聚体,再在乳化后的水性PU中加入引发剂、丙烯酸酯类单体、硅氧烷偶联剂的混合物,即制得有机硅丙烯酸酯双改性的水性聚氨酯。 另一种是先合成含硅

14、聚氨酯预聚体,再加入丙烯酸酯类单体共混后在水中乳化,得到含溶胀丙烯酸酯单体的硅改性聚氨酯水分散体,然后向上述含溶胀丙烯酸酯单体的硅改性聚氨酯水分散体中,滴加引发剂进行乳液聚合,得有机硅改性丙烯酸聚氨酯乳液。 张晓镭等合成的有机硅丙烯酯水性聚氨酯聚合物综合了丙烯酸酯-聚氨酯-有机硅3种高分子化合物的优点,用在皮革涂饰剂中,克服了热粘冷脆的问题,有效解决了水性聚氨酯不耐湿擦的缺点。王海虹等采用乳液聚合的方法,制备了具有核-壳型结构的有机硅改性丙烯酸聚氨酯乳液,结果表明,经有机硅改性的丙烯酸聚氨酯乳液,在附着力、稳定性、硬度、光泽等方面有显著上升。王军兰等先合成水性聚氨酯乳液作为种子乳液,进而与丙烯

15、酸酯及有机硅反应,得到无皂共聚乳液,将其用于织物上做涂层,应用试验表明各项性能较优;将其用作皮革涂饰剂,手感软,光泽亮,并有一定的防水效果。胡剑青等采用侧链含活性双键的自乳化水性聚氨酯作为乳化剂和反应物,利用分子复合技术,合成了聚氨酯-丙烯酸酯和有机硅互穿网络的杂合水分散体。获得的杂合水分散体兼具3种聚合物的性能优势。 5、纳米材料改性水性聚氨酯 纳米材料具有表面效应、小尺寸效应、光学效应、量子尺寸效应、宏观量子尺寸效应等特殊性质,可以使材料获得新的功能。目前对水性聚氨酯纳米改性的方法主要是用纳米材料机械共混。 HsuCK等合成了一种纳米碳管/水性聚氨酯(CNT/WPU)纳米复合材料,通过对纳

16、米碳管进行修饰,在纳米碳管上引入NH2基,再与聚氨酯预聚体上的NCO基反应形成共价键,或是中和时,NH2基与聚氨酯预聚体上的COOH基结合形成共价键,从而得到了稳定的纳米碳管改性水性聚氨酯乳液。研究发现,这种水性聚氨酯乳液贮存稳定,胶膜的热稳定性提高了26,拉伸强度提高了370%,拉伸模量提高了170.6%。胡津昕等以水性聚氨酯为基体聚合物材料,利用高分子纳米微胶囊化技术实现对无机TiO2等微粒进行有效的原位包封,涂膜机械强度、韧性和抗老化性提高,加工性能改善。罗振扬等分别将纳米氧化铝(Al2O3)和纳米氧化铟锡(ITO)加入到水性聚氨酯树脂中,改善了水性聚氨酯涂膜的耐磨性能和隔热性能。冯利邦

17、等成功合成了一种含有纳米硅氧化物的水性聚氨酯涂料,研究结果表明,纳米硅氧化物的引入,可以显著改善聚氨酯漆膜表面硬度、热稳定性、耐候性及耐水和耐有机溶剂性。赵石林等通过共混法制备了纳米SiO2改性水性聚氨酯UV屏蔽透明涂料。施永建等利用丙烯酸改性水性聚氨酯合成了综合性能优异的水性PUA,以此为成膜物,以纳米Al2O3为填料,采用共混法制得了耐磨性能优异的纳米Al2O3复合涂料;改用纳米ITO为填料则制得了具有良好隔热性能的纳米复合涂料。 6、展望 随着水性聚氨酯更广泛、更深入的应用,对其性能的要求也进一步提高,今后的水性聚氨酯将朝着高科技含量、高性能、多功能性方向发展。实践证明,环氧树脂、有机硅

18、、丙烯酸酯以及纳米材料复合改性都可以很好的提高水性聚氨酯的综合性能。今后应进一步加强复合改性技术的理论研究,深入研究各种因素对复合改性性能的影响,以便把产品做的更好。还要充分利用聚氨酯分子的可设计性,探索新的合成方法和工艺,在聚氨酯链上引入特殊功能的分子结构,以获得具有更多功能的聚氨酯复合乳液。同时应重视应用技术的研究,加速复合改性水性聚氨酯的生产和推广,这将具有重要的实践意义。随着经济的发展和水性聚氨酯消费需求的增大,以及科研人员的努力,高性能的复合改性水性聚氨酯必将取得长足的发聚乙烯(PE)简介1.1聚乙烯化学名称:聚乙烯英文名称:polyethylene,简称PE结构式: 聚乙烯是乙烯经

19、聚合制得的一种热塑性树脂,也包括乙烯与少量-烯烃的共聚物。聚乙烯是五大合成树脂之一,是我国合成树脂中产能最大、进口量最多的品种。1.1.1聚乙烯的性能1.一般性能聚乙烯为白色蜡状半透明材料,柔而韧,比水轻,无嗅、无味、无毒,常温下不溶于一般溶剂,吸水性小,但由于其为线性分子可缓慢溶于某些有机溶剂,且不发生溶胀。工业上为使用和贮存的方便通常在聚合后加入适量的塑料助剂进行造粒,制成半透明的颗粒状物料。PE易燃,燃烧时有蜡味,并伴有熔融滴落现象。聚乙烯的性质因品种而异,主要取决于分子结构和密度,也与聚合工艺及后期造粒过程中加入的塑料助剂有关。2.力学性能PE是典型的软而韧的聚合物。除冲击强度较高外,

20、其他力学性能绝对值在塑料材料中都是较低的。PE密度增大,除韧性以外的力学性能都有所提高。LDPE由于支化度大,结晶度低,密度小,各项力学性能较低,但韧性良好,耐冲击。HDPE支化度小,结晶度高,密度大,拉伸强度、刚度和硬度较高,韧性较差些。相对分子质量增大,分子链间作用力相应增大,所有力学性能,包括韧性也都提高。几种PE的力学性能见表1-1。表1-1 几种PE力学性能数据性能LDPELLDPEHDPE超高相对分子质量聚乙烯邵氏硬度(D)拉伸强度MPa拉伸弹性模量MPa压缩强度MPa缺口冲击强度kJm-2弯曲强度MPa414672010030012.58090121740501525250550

21、70152560702137400130022.540702540646730501508001003.热性能PE受热后,随温度的升高,结晶部分逐渐熔化,无定形部分逐渐增多。其熔点与结晶度和结晶形态有关。HDPE的熔点约为125137,MDPE的熔点约为126134,LDPE的熔点约为105115。相对分子质量对PE的熔融温度基本上无影响。PE的玻璃化温度(Tg)随相对分子质量、结晶度和支化程度的不同而异,而且因测试方法不同有较大差别,一般在-50以下。PE在一般环境下韧性良好,耐低温性(耐寒性)优良,PE的脆化温度(Tb)约为-80-50,随相对分子质量增大脆化温度降低,如超高相对分子质量聚

22、乙烯的脆化温度低于-140。PE的热变形温度(THD)较低,不同PE的热变形温度也有差别,LDPE约为3850(0.45MPa,下同),MDPE约为5075,HDPE约为6080。PE的最高连续使用温度不算太低,LDPE约为82100,MDPE约为105121,HDPE为121,均高于PS和PVC。PE的热稳定性较好,在惰性气氛中,其热分解温度超过300。PE的比热容和热导率较大,不宜作为绝热材料选用。PE的线胀系数约在(1530)10-5K-1之间,其制品尺寸随温度改变变化较大。几种PE的热性能见表1-2。表1-2几种PE热性能性能LDPELLDPEHDPE超高相对分子质量聚乙烯熔点热降解温

23、度(氮气)热变形温度(0.45MPa)脆化温度线性膨胀系数(10-5K-1)比热容J(kgK)-1热导率/ W(mK)-11051153003850-80-501624221823010.351201253005075-100-751251373006080-100-701116192523010.421902103007585-140-704.电性能PE分子结构中没有极性基团,因此具有优异的电性能,几种PE的电性能见表1-3。PE的体积电阻率较高,介电常数和介电损耗因数较小,几乎不受频率的影响,因而适宜于制备高频绝缘材料。它的吸湿性很小,小于0.01(质量分数),电性能不受环境湿度的影响。尽

24、管PE具有优良的介电性能和绝缘性,但由于耐热性不够高,作为绝缘材料使用,只能达到Y级(工作温度90)。表1-3聚乙烯的电性能性能LDPELLDPEHDPE超高相对分子质量聚乙烯体积电阻率/cm介电常数/Fm-1(106Hz)介电损耗因数(106Hz)介电强度/kVmm-110162.252.350.00052010162.202.300.0005457010162.302.350.0005182810172.350.0005355.化学稳定性PE是非极性结晶聚合物,具有优良的化学稳定性。室温下它能耐酸、碱和盐类的水溶液,如盐酸、氢氟酸、磷酸、甲酸、醋酸、氨、氢氧化钠、氢氧化钾以及各类盐溶液(包

25、括具有氧化性的高锰酸钾溶液和重铬酸盐溶液等),即使在较高的浓度下对PE也无显著作用。但浓硫酸和浓硝酸及其他氧化剂对聚乙烯有缓慢侵蚀作用。PE在室温下不溶于任何溶剂,但溶度参数相近的溶剂可使其溶胀。随着温度的升高,PE结晶逐渐被破坏,大分子与溶剂的作用增强,当达到一定温度后PE可溶于脂肪烃、芳香烃、卤代烃等。如LDPE能溶于60的苯中,HDPE能溶于8090的苯中,超过100后二者均可溶于甲苯、三氯乙烯、四氢萘、十氢萘、石油醚、矿物油和石蜡中。但即使在较高温度下PE仍不溶于水、脂肪族醇、丙酮、乙醚、甘油和植物油中。PE在大气、阳光和氧的作用下易发生老化,具体表现为伸长率和耐寒性降低,力学性能和电

26、性能下降,并逐渐变脆、产生裂纹,最终丧失使用性能。为了防止PE的氧化降解,便于贮存、加工和应用,一般使用的PE原料在合成过程中已加入了稳定剂,可满足一般的加工和使用要求。如需进一步提高耐老化性能,可在PE中添加抗氧剂和光稳定剂等。6.卫生性PE分子链主要由碳、氢构成,本身毒性极低,但为了改善PE性能,在聚合、成型加工和使用中往往需添加抗氧剂和光稳定剂等塑料助剂,可能影响到它的卫生性。树脂生产厂家在聚合时总是选用无毒助剂,且用量极少,一般树脂不会受到污染。PE长期与脂肪烃、芳香烃、卤代烃类物质接触容易引起溶胀,PE中有些低相对分子质量组分可能会溶于其中,因此,长期使用PE容器盛装食用油脂会产生一

27、种蜡味,影响食用效果。1.1.2聚乙烯的分类聚乙烯的生产方法不同,其密度及熔体流动速率也不同。按密度大小主要分为低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)。其中线性低密度聚乙烯属于低密度聚乙烯中的一种,是工业上常用的聚乙烯,其他分类法有时把MDPE归类于HDPE或LLDPE。按相对分子质量可分为低相对分子质量聚乙烯、普通相对分子质量聚乙烯、超高相对分子质量聚乙烯。按生产方法可分为低压法聚乙烯、中压法聚乙烯和高压法聚乙烯。1.低密度聚乙烯英文名称: Low density polyethylene,简称LDPE低密度聚乙烯,又称高

28、压聚乙烯。无味、无臭、无毒、表面无光泽、乳白色蜡状颗粒,密度0.9100.925g/cm3,质轻,柔性,具有良好的延伸性、电绝缘性、化学稳定性、加工性能和耐低温性(可耐-70),但力学强度、隔湿性、隔气性和耐溶剂性较差。分子结构不够规整,结晶度较低(55%65%),熔点105115。LDPE可采用热塑性成型加工的各种成型工艺,如注射、挤出、吹塑、旋转成型、涂覆、发泡工艺、热成型、热风焊、热焊接等,成型加工性好。主要用作农膜、工业用包装膜、药品与食品包装薄膜、机械零件、日用品、建筑材料、电线、电缆绝缘、吹塑中空成型制品、涂层和人造革等。2.高密度聚乙烯英文名称:High Density Poly

29、ethylene,简称HDPE高密度聚乙烯,又称低压聚乙烯。无毒、无味、无臭,白色颗粒,分子为线型结构,很少有支化现象,是典型的结晶高聚物。力学性能均优于低密度聚乙烯,熔点比低密度聚乙烯高,约125137,其脆化温度比低密度聚乙烯低,约-100-70,密度为0.9410.960g/cm3。常温下不溶于一般溶剂,但在脂肪烃、芳香烃和卤代烃中长时间接触时能溶胀,在70以上时稍溶于甲苯、醋酸中。在空气中加热和受日光影响发生氧化作用。能耐大多数酸碱的侵蚀。吸水性小,具有良好的耐热性和耐寒性,化学稳定性好,还具有较高的刚性和韧性,介电性能、耐环境应力开裂性亦较好。HDPE可采用注射、挤出、吹塑、滚塑等成

30、型方法,生产薄膜制品、日用品及工业用的各种大小中空容器、管材、包装用的压延带和结扎带,绳缆、鱼网和编织用纤维、电线电缆等。3.线性低密度聚乙烯英文名称:Linear Low Density Polyethylene,简称LLDPE线形低密度聚乙烯被认为是“第三代聚乙烯”的新品种,是乙烯与少量高级-烯烃(如丁烯-1、己烯-1、辛烯-1、四甲基戊烯-1等)在催化剂作用下,经高压或低压聚合而成的一种共聚物,为无毒、无味、无臭的乳白色颗粒,密度0.9180.935g/cm3。与LDPE相比,具有强度大、韧性好、刚性大、耐热、耐寒性好等优点,且软化温度和熔融温度较高,还具有良好的耐环境应力开裂性,耐冲击

31、强度、耐撕裂强度等性能。并可耐酸、碱、有机溶剂等。LLDPE可通过注射、挤出、吹塑等成型方法生产农膜、包装薄膜、复合薄膜、管材、中空容器、电线、电缆绝缘层等。由于不存在长支链,LLDPE的 6570用于制作薄膜。4.中密度聚乙烯英文名称:Medium density polyethylene,简称MDPE中密度聚乙烯是在合成过程中用-烯烃共聚,控制密度而成。MDPE的密度为0.9260.953g/cm3,结晶度为7080,平均相对分子质量为20万,拉伸强度为824MPa,断裂伸长率为5060,熔融温度126135,熔体流动速率为0.135g10min,热变形温度(0.46MPa)4974。MD

32、PE最突出的特点是耐环境应力开裂性及强度的长期保持性。MDPE可用挤出、注射、吹塑、滚塑、旋转、粉末成型加工方法,生产工艺参数与HDPE和LDPF相似,常用于管材、薄膜、中空容器等。5.超高相对分子质量聚乙烯英文名称:ultra-high molecular weight polyethylene,简称UHMWPE超高相对分子质量聚乙烯冲击强度高,耐疲劳,耐磨,是一种线型结构的具有优异综合性能的热塑性工程塑料。其相对分子质量达到300600万,密度0.9360.964g/cm3,热变形温度(0.46MPa)85,熔点130136。UHMWPE因相对分子质量高而具有其他塑料无可比拟的优异性能,如

33、耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能,广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于超高相对分子质量聚乙烯优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用,而且,超高相对分子质量聚乙烯耐低温性能优异,在-40时仍具有较高的冲击强度,甚至可在-269下使用。超高相对分子质量聚乙烯纤维的复合材料在军事上已用作装甲车辆的壳体、雷达的防护罩壳、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。由于超高相对分子质量聚乙烯熔融状态的粘度高达108Pas,流动性极差,其熔体流动速率几乎为零,所以很难用一般的

34、机械加工方法进行加工。近年来,通过对普通加工设备的改造,已使超高相对分子质量聚乙烯由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其他特殊方法的成型。6.茂金属聚乙烯茂金属聚乙烯(mPE)是近年来迅速发展的一类新型高分子树脂,其相对分子质量分布窄,分子链结构和组成分布均一,具有优异的力学性能和光学性能,已被广泛应用于包装、电气绝缘制品等。1.1.3聚乙烯的成型加工PE的熔体粘度比PVC低,流动性能好,不需加入增塑剂已具有很好的成型加工性能。前文已介绍了各类聚乙烯可采用的成型加工方法,下面主要介绍在成型过程中应注意的几个问题。聚乙烯属于结晶性塑料,吸湿小,成型前不需充分干燥,熔体流动性极好,

35、流动性对压力敏感,成型时宜用高压注射,料温均匀,填充速度快,保压充分。不宜用直接浇口,以防收缩不均,内应力增大。注意选择浇口位置,防止产生缩孔和变形。PE的热容量较大,但成型加工温度却较低,成型加工温度的确定主要取决于相对分子质量、密度和结晶度。LDPE在180左右, HDPE在220左右,最高成型加工温度一般不超过280。熔融状态下,PE具有氧化倾向,因而,成型加工中应尽量减少熔体与空气的接触及在高温下的停留时间。PE的熔体粘度对剪切速率敏感,随剪切速率的增大下降得较多。当剪切速率超过临界值后,易出现熔体破裂等流动缺陷。制品的结晶度取决于成型加工中对冷却速率的控制。不论采取快速冷却还是缓慢冷

36、却,应尽量使制品各部分冷却速率均匀一致,以免产生内应力,降低制品的力学性能。收缩范围和收缩值大(一般成型收缩率为1.55.0),方向性明显,易变形翘曲,冷却速度宜慢,模具设冷料穴,并有冷却系统。软质塑件有较浅的侧凹槽时,可强行脱模。1.1.4聚乙烯的改性聚乙烯属非极性聚合物,与无机物、极性高分子相容性弱,因此其功能性较差,采用改性可提高PE的耐热老化性、高速加工性、冲击强度、粘接性、生物相容性等性质。常用的改性方法包括物理改性和化学改性。1.物理改性物理改性是在PE基体中加入另一组分(无机组分、有机组分或聚合物等)的一种改性方法。常用的方法有增强改性、共混改性、填充改性。(1)增强改性 增强改

37、性是指填充后对聚合物有增强效果的改性。加入的增强剂有玻璃纤维、碳纤维、石棉纤维、合成纤维、棉麻纤维、晶须等。自增强改性也属于增强改性的一种。自增强改性。所谓自增强就是使用特殊的加工成型方法,使得材料内部组织形成伸直链晶体,材料内部大分子晶体沿应力方向有序排列,材料的宏观强度得到大幅度提高,同时分子链有序排列将使结晶度提高,从而使材料的强度进一步提高,由于所形成的增强相与基体相的分子结构相同,因而不存在外增强材料中普遍存在的界面问题。如采用超高相对分子质量聚乙烯(UHMPE)纤维增强LDPE,在加热加压成型的条件下,可以形成良好的界面,最大限度发挥基体和纤维的强度。纤维增强改性。纤维增强聚合物基

38、复合材料由于具有比强度高、比刚度高等优点而得到广泛应用。如采用经KH-550偶联剂处理的长玻璃纤维(LGF)与PE复合制备的PELGF复合材料,当LGF加入量为3O(质量分数)、长度约为35mm时,复合材料的拉伸强度和冲击强度分别为52.5MPa和52kJm。晶须改性。晶须的加入能够大幅度提高HDPE材料的力学性能,包括短期力学性能及耐长期蠕变性能。晶须对HDPE材料的增强作用主要归因于它们之间的良好界面粘接,同时刚性的晶须则能够承担较大的外界应力使复合材料的模量得到提高。纳米粒子增强改性。少量无机刚性粒子填充PE可同时起到增韧与增强的作用。如将表面处理过的纳米SiO2粒子填充mLLDPE-L

39、DPE,SiO2纳米粒子均匀分散于基材中,与基材形成牢固的界面结合,当填充质量分数为2时,拉伸强度、断裂伸长率分别提高了13.7MPa和174.9。(2)共混改性 共混改性主要目的是改善PE的韧性、冲击强度、粘接性、高速加工性等各种缺陷,使其具有较好的综合性能。共混改性主要是向PE基体中加入另一种聚合物,如塑料类、弹性体类等聚合物,以及不同种类的PE之间进行共混。PE系列的共混改性。单一组分的PE往往很难满足加工要求,而通过不同种类PE之间的共混改性可以获得性能优良的PE材料。如通过LDPE与LLDPE共混,解决了LDPE因大量添加阻燃剂和抗静电剂等助剂造成力学性能急剧降低的问题;LLDPE与

40、HDPE共混后可以提高产品的综合性能。PE与弹性体的共混改性。弹性体具有低的表面张力、较强的极性、突出的增韧作用,因此与PE共混后,既能保持PE的原有性能,同时也可以制备出具有综合优良性能的PE。如LDPE-聚烯烃弹性体(POE)共混物,当POE的质量分数为3O时,共混体系的拉伸强度达到最大值,为21.5 MPa。PE与塑料的共混改性。聚乙烯具有良好的韧性,但制品的强度和模量较低,与工程塑料等共混可提高复合体系的综合力学性能。但PE和这类高聚物的界面问题也是影响其共混物性能的主要原因,因此通常需要加入界面相容剂以提高共混物的力学性能。(3)填充改性 填充改性是在PE基质中加入无机填料或有机填料

41、,一方面可以降低成本达到增重的目的,另一方面可提高PE的功能性,如电性能、阻燃性能等,但同时对复合材料的力学性能和加工性能带来一定程度的影响。无论是无机填料还是有机填料,填料与PE基体的相容性和界面粘接强度是PE填充改性必须面临的问题,而PE是非极性化合物,与填料相容性差,因此,必须对填料进行表面处理。填料的表面处理一般采用物理或化学方法进行处理,在填料表面包覆一层类似于表面活性剂的过渡层,起“分子桥”的作用,使填料与基体树脂间形成一个良好的粘接界面。常用的填料表面处理技术有:表面活性剂或偶联剂处理技术、低温等离子体技术、聚合填充技术和原位乳液聚合技术等。PE中填充木粉、淀粉、废纸粉、滑石粉、

42、碳酸钙等一类填料,不仅可以改善PE的性能,同时也具有十分重要的健康环保意义。2.化学改性化学改性的方法主要有接枝改性、共聚改性、交联改性、氯化及氯磺化改性和等离子体改性处理等方法。其原理是通过化学反应在PE分子链上引入其他链节和功能基团,由此提高材料的力学性能、耐侯性能、抗老化性能和粘接性能等。(1)接枝改性 接枝改性是指将具有各种功能的极性单体接枝到PE主链上的一种改性方法。接枝改性后的PE不但保持了其原有特性,同时又增加了其新的功能。常用的接枝单体有丙烯酸(AA)、马来酸酐(MA)、马来酸盐、烯基双酚A醚和活性硅油等。接枝改性的方法主要有溶液法、固相法、熔融法、辐射接枝法、光接枝法等。(2)共聚改性 共聚改性是指通过共聚反应将其他大分子链或官能团引入到PE分子链中,从而改变PE的基本性能。主要改性品种有乙烯-丙烯共聚物(塑料)、EVA、乙烯-丁烯共聚物、乙烯-其他烯烃(如辛烯POE、环烯烃)共聚物、乙烯-不饱和酯共聚物(EAA、 EMAA 、EEA、EMA、EMMA、EMAH)等。通过共聚反应,可以改变大分子链的柔顺性或使原来的基团带有反应性官能团,可以起到反应性增容剂的作用。(3)交联改性 交联改性是指在聚合物大分子链间形成了化学共价键以取代原来的范德华力,由此极大地改善了诸如耐热性、耐磨性、弹性形变、耐化学药品性及耐环境应力开

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论