物理化学教学课件:chap12(5-6)_第1页
物理化学教学课件:chap12(5-6)_第2页
物理化学教学课件:chap12(5-6)_第3页
物理化学教学课件:chap12(5-6)_第4页
物理化学教学课件:chap12(5-6)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1,三、粒子全同性修正,1.独立的定域子系统:不需全同性修正 2.独立的离域子系统 因粒子不可区别,故需全同性修正 当温度不太低、密度不太高、子的质量不太小时,即 gj Nj 时,则 而MB分布公式不变,2,3,MB分布公式的适用条件,N、E、V 指定、平衡的独立子系统,任何形式的能量。对独立的离域子系统还有三句话(目的:使粒子广布于各个能级,4,四、玻色-爱因斯坦分布 和费米-狄拉克分布,BE分布: FD分布,5,练 习 1. 关于最概然分布,下列说法中不正确的是( )。 A. 最概然分布是拥有微观状态数最多的分布; B. 最概然分布是热力学概率最大的分布; C. 在含有大量粒子的系统中,最

2、概然分布代表了一切可能的分布; D. 最概然分布的出现概率 随系统粒子数的增大而增大,2. 玻耳兹曼分布是最概然分布,也是平衡分布。(,6,3. 一维简谐振子的振动能 。一定温度下已知处于振动第二激发能级的分子数与基态分子数之比为0.01,则处于振动第一激发能级的分子数与基态分子数之比=_ 4. 线形刚体转子转动能级的简并度为_,一维简谐振子振动能级的简并度为_,7,5. 对热力学性质(U、V、N)确定的体系,下面描述中不对的是:( ) A. 体系中各能级的能量和简并度一定 B. 体系的微观状态数一定 C. 体系中粒子在各能级上的分布数一定 D. 体系的吉布斯自由能一定,8,6. 对于玻尔兹曼

3、分布定律 的说法: (1) Ni 是第i能级上的粒子分布数; (2) 随着能级升高,ei 增大, Ni 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系 其中正确的是:( ) A. (1)、(3) ; B. (3)、(4) ; C. (1)、(2) ; D. (2)、(4,9,7. 对于分布在某一能级 ei 上的粒子数 Ni ,下列说法中正确是:( ) A. Ni 与能级的简并度无关 B. ei 值越小, Ni 值就越大 C. Ni 称为一种分布 D. 任何分布的 Ni 都可以用波尔兹曼分布公式求出,10,例1 设HCl分子可看作线型刚性转子,计算它在

4、300K时分子按转动能级的分布,解,11,例1 设HCl分子可看作线型刚性转子,计算它在300K时分子按转动能级的分布,12,例2 设I2可看作单维谐振子,计算I2蒸气分子在300K时按振动能级的分布,解,13,例3.有一理想气体系统,其分子可在能级间隔 的两能级上分布,(式中 , k为玻耳兹曼常数,K为热力学温度单位)。 (1)若能级是非简并的,试确定300K时处在相邻两能级上的分子数之比 。 (2)若使处在相邻两能级上的分子数之比是(1)的结果的1.1倍,则温度应是多少? (3)若能级的简并度 、 ,则在温度为300K时处在相邻两能级上的分子数之比 又是多少,14,解:(1,3,15,例4

5、. 在体积为V 的立方体容器中有极大数目的三维平动子,其 。计算该物系在平衡情况下,x2 + y2 + z2 =14 的平动能级上粒子的分布数N与基态能级上分布数 N0 之比,16,解:平衡态粒子的分布符合玻尔兹曼分布,故,因三维平动子基态能级的 x = y = z = 1,所以 g0 =1 ,(x2+ y2 + z2 ) = 1+1+1 = 3 平动子基态能级的能值为,17,当 x2+ y2 + z2 = 14 时,能级的能值为,由于量子化条件的限制,x2 + y2 + z2 = 14 的能级 对应的三个分量数只能是 1、2 及 3 三个数,故 g = 3! = 6,12-6 子配分函数,1

6、9,定义,反映粒子在各能级或各量子态上分配的整体特性,它是联系独立子系统微观性质与宏观性质的纽带,20,一、子配分函数的物理意义,1.对基态能级 2.=1,低温时所有粒子均在基态,q0 的极小值。 3.1,高温时大多粒子逃逸基态 q、q0是粒子逃逸基态能级程度的度量,21,问题与思考,子配分函数的值如何受温度及能级间隔的影响,由子配分函数的物理意义可知,温度升高,q 的值增大;能级间隔小,则 q 的值大。因室温下N2 的 ,故其,22,1mol N2在298K、0.0245m3时, qt=3.511030,qr=51.6,qv=3.39103, q=qtqr qv=6.141029,返回章首,只要温度不太低、密度不太高、分子的质量不太小,q将很大,BE分布和FD分布可用MB分布代替。上例说明,qN (1024,23,二、子配分函数的析因子性质,24,三、q 的计算,1、平动配分函数,25,将各加和项化为黎曼积分,且,则,26,例1 若压力为 ,温度为298K,试计算1molN2的平动配分函数,解:N2分子质量 。该条件下N2可视为理想气体,27,2、转动配分函数,线型刚性转子(例 CO,转动温度,28,因 故以上求和可化为积分 令 线型对称分子 =

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论