2021年中考数学二轮专题复习《压轴题》培优练习六(含答案)_第1页
2021年中考数学二轮专题复习《压轴题》培优练习六(含答案)_第2页
2021年中考数学二轮专题复习《压轴题》培优练习六(含答案)_第3页
2021年中考数学二轮专题复习《压轴题》培优练习六(含答案)_第4页
2021年中考数学二轮专题复习《压轴题》培优练习六(含答案)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考数学二轮专题复习压轴题培优练习六已知抛物线的表达式为y=-x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物线与x轴两个交点的横坐标分别为x1,x2,若x12+x22=26,求c的值;(3)若P、Q是抛物线上位于第一象限的不同两点,PA、QB都垂直于x轴,垂足分别为A、B,且OPA与OQB全等,求证:c-5.25. 如图,已知抛物线y=x2+bx+c与x轴交于点A(-1,0)、C,与y轴交于点B(0,3),抛物线的顶点为P(1)求抛物线的解析式;(2)若抛物线向下平移k个单位后经过点(5,6) 求k的值及平移后抛物线所对应函数的最小值; 设平移后抛物线与y轴交于点D,

2、顶点为Q,点M是平移后的抛物线上的一个动点,请探究:当点M在何处时,MBD的面积是MPQ面积的2倍?求出此时点M的坐标抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3),(1)求二次函数y=ax2+bx+c的解析式;(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;(3)平行于x轴的一条直线交抛物线于M,N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径 如图,抛物线y=x2+bx+c与直线y=x+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC

3、,BC已知A(0,3),C(3,0)(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MBMC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQPA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由已知抛物线y=ax24a(a0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,PBA=120,如图所示(1)求抛物线的解析式(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动当点M在曲线PB之间(含端点)移动时,是否存在点M

4、使APM的面积为?若存在,求点M的坐标;若不存在,请说明理由当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x23x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处点B的坐标为( 、 ),BK的长是 ,CK的长是 ;求点F的坐标;请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H

5、,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GPOM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,MOG和NOG的面积分别表示为S1和S2,在点M的运动过程中,S1S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(-1,0)(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=

6、t恒有四个交点,从左到右四个交点依次记为D,E,F,G当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当mxn时,y的取值范围是my7,请直接写出x的取值范围 如图1,已知抛物线y=x2+bx+c与x轴交于A(1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由(3)如图2,连接BC,PB,PC,设PBC的面积为S求S关于t的函数表达式;求P点

7、到直线BC的距离的最大值,并求出此时点P的坐标答案解析解:解:(1)点A(1,0)、点B(0,3),在抛物线上,解得:,所求的抛物线解析式为y=x2+4x+3;(2)设平移后抛物线的解析式为y=x2+4x+3+k它经过点(5,6),6=(5)2+4(5)+3+kk=2平移后抛物线的解析式为y=x2+4x+32=x2+4x+1配方,得y=(x+2)23a=10,平移后的抛物线的最小值是3(3)由(2)可知,BD=PQ=2,对称轴为x=2又SMBD=2SMPQ,BD边上的高是PQ边上的高的2倍设M点坐标为(m,n)当M点的对称轴的左侧时,则有0m=2(2m)m=4n=(4)2+4(4)+1=1M(

8、4,1)当M点在对称轴与y轴之间时,则有0m=2m(2)m=n=()2+(4)+1=M(,)当M点在y轴的右侧时,则有m=2(m(2)m=40,不合题意,应舍去综合上述,得所求的M点的坐标是(4,1)或(,)解:(1)将C(0,-3)代入y=ax2+bx+c,得 c=3将c3,B(3,0)代入y=ax2+bx+c,得 是对称轴,将(2)代入(1)得:, 所以,二次函数得解析式是(2)AC与对称轴的交点P即为到B、C的距离之差最大的点C点的坐标为(0,-3),A点的坐标为(-1,0), 直线AC的解析式是,又对称轴为, 点P的坐标(1,-6)(3)设,所求圆的半径为r,则 , 对称轴为, 由(1

9、)、(2)得:将代入解析式,得 ,整理得: 由于 当时,解得, , (舍去),当时,解得,(舍去)所以圆的半径是或解:解:(1)如图1,令y=0代入y=ax24a,0=ax24a,a0,x24=0,x=2,A(2,0),B(2,0),AB=4,过点P作PCx轴于点C,PBC=180PBA=60,PB=AB=4,cosPBC=,BC=2,由勾股定理可求得:PC=2,OC=OC+BC=4,P(4,2),把P(4,2)代入y=ax24a,2=16a4a,a=,抛物线解析式为;y=x2;(2)点M在抛物线上,n=m2,M的坐标为(m,m2),当点M在曲线PB之间(含端点)移动时,2m4,如图2,过点M

10、作MEx轴于点E,交AP于点D,设直线AP的解析式为y=kx+b,把A(2,0)与P(4,2)代入y=kx+b,得:,解得直线AP的解析式为:y=x+,令x=m代入y=x+,y=m+,D的坐标为(m, m+),DM=(m+)(m2)=m2+m+,SAPM=DMAE+DMCE=DM(AE+CE)=DMAC=m2+m+4当SAPM=时,=m2+m+4,解得m=3或m=1,2m4,m=3,此时,M的坐标为(3,);当点M在曲线BA之间(含端点)移动时,2m2,n0,当2m0时,|m|+|n|=mn=m2m+=(m+)2+,当m=时,|m|+|n|可取得最大值,最大值为,此时,M的坐标为(,),当0m

11、2时,|m|+|n|=mn=m2+m+=(m)2+,当m=时,|m|+|n|可取得最大值,最大值为,此时,M的坐标为(,),综上所述,当点M在曲线BA之间(含端点)移动时,M的坐标为(,)或(,)时,|m|+|n|的最大值为解:(1)如图1中,抛物线y=x23x+m的对称轴x=10,点B坐标(10,0),四边形OBKC是矩形,CK=OB=10,KB=OC=8,故答案分别为10,0,8,10在RTFBK中,FKB=90,BF=OB=10,BK=OC=8,FK=6,CF=CKFK=4,点F坐标(4,8)设OA=AF=x,在RTACF中,AC2+CF2=AF2,(8x)2+42=x2,x=5,点A坐标(0,5),代入抛物线y=x23x+m得m=5,抛物线为y=x23x+5(2)不变S1S2=189理由:如图2中,在RTE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论