



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、. 第三章 单元系的相变 3.4求证 ?S? (1) ?T?n?T,VV,n?V? (2) ?P?n?T,PT,n证明:(1)由自由能的全微分方程dF=-SdT-PdV+?dn ?S?及偏导数求导次序的可交换性,可以得到 n?T?VT,Vn这是开系的一个麦氏关系。 (2)由吉布斯函数的全微分方程dG=-SdT+VdP+?dn ?V? 及偏导数求导次序的可交换性,可以得到 ?P?n?T,T,nP 这是开系的一个麦氏关系。?U?T? 求证3.5 ?n?T?VT,V,nnn,VTTSU?F?F的偏导数,有解:自由能 是以对为自变量的特性函数,求?F?U?S?T? (1) ? ?n?nn?TV,VVT
2、,T,?dn?SdtpdVdF? 但自由能的全微分?F?, 可得= ?n?T,V?S?T? )(2 =- ? nT?VT,nV,?U? -代入(1),即有=-T ?n?T?VT,V,n1?V?S?T?=和等温压 ,体胀系数C3.6两相共存时,两相系统的定压热容量P TV?T?Pp1?V?k?均趋于无穷。试加以说明。 缩系数 V?PT?T解: 我们知道,两相平衡共存时,两相的温度,压强和化学式必须相等。如果在平衡压强. . 下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变。两相系统吸取热量而温度不变表明他的热容量 CP趋于无穷。在
3、上述过程中两相系统的体积也将变化而温度不变,说明两相系统的体胀系数 1?V?也趋于无穷。如果在平衡温度下,以略高于平衡压强的压强准静态地施加于, V?T?P物质将准静态地从比容较高的相转移到比容较低的相,使两相系统的体积改变。无穷小的压1?V?k?也趋于无穷。强导致有限的体积变化说明,两相系统的等温压缩系数 V?PT?TPdT?L?U? 3.7试证明在相变中物质摩尔内能的变化为 mTdP?如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简。 UVH 的 其摩尔内能解: 发生相变物质由一相转变到另一相时,和摩尔体积 摩尔焓mmm?U?H?P?V 改变满足mmm平衡相变是在确定的温度和压
4、强下发生的,相变中摩尔焓的变化等于物质在相变过程?H?L :中吸收的热量,即相变潜热LmdPL? 克拉伯龙方程给出 dTT?VmLdT?V 即 mTdPPdT?U?L?,即有) 将(2)和(4)代入(1 mdPT?如果一相是气体,可看作理想气体,另一相是凝聚相,其摩尔体积远小于气相的摩尔dPLP 体积,则克拉伯龙方程简化为 2dTRTRT?1U?L?)简化为 式(5 mL?3754?9227.,液态氨的蒸P)方程为:lnp=3.8在三相点附近,固态氨的蒸汽压(单位为a T3063?.3824,试求三相点的温度和压强,氨的汽化热、升华热及在三相lnp=汽压方程为 T点的熔解热。 解: 固态氨的蒸
5、气压方程上固相与气相的两相平衡曲线,液态氨的蒸气压方程是液相与气相的两相平衡曲线。三相点的温度 可由两条相平衡曲线的交点确定: 37543063?24.2792?38? (1) TTtt. . T?195.2K 由此解出tP?5934PaT 将代入蒸气压方程,可得ttL?AlnP? 将所给蒸气压方程与式(3.4.8)(2) RT4J.120?103L比较,可以求得 升4J?102.547 L 汽40.573?10J L等于L=L-L=氨在三相点的熔解热汽熔熔升?Cmol所吸收1K 相两相平衡的条件下,使3.9以1 表示在维持相物质升高 相与?V?dP?m?CC 热量,称为 相的两相平衡的热容量
6、。试证明相是蒸=,如果-T? PdTT?PL?C?C?相是凝聚相,上式可化简为,并说明为什么饱和 汽,可看作理想气体,? PT蒸汽的热容量有可能是负的。 ?mol 1 相与相物质升高 解: 根据式(1.14.4),在维持相两相平衡的条件下,使?S?S?SdP?mmmCCTT?T? 为 1K所吸收热量? dTPT?T?TP?S?mT?C? P?T?P 2.2.4)给出式(2.2.8)和(?V?S?mm? PT?PT?VdP?mCC-T代入(1=)得 ? ? PdTT?P?V?L?m?CC 将克拉伯龙方程代入,将式(1)表示为-= T? ?P?V?VPmm?VVV?,)中略去 相是气相,可看作理想
7、气体, 相是凝聚相, 在式(4如果 mmmL?V?CC 5) ( 可简化为4式=RT 且令P,() m?PTL?CC?C 是负的。)知,当5是饱和蒸气的热容量。由式( 室。? PT. . 3.10试证明,相变潜热随温度的变化率为 ?V?VLdLL?mm?C?C? = -? PP?TT?TdTV?V?mmPPdL?CC = 如果 )简化为相是气相,- 相是凝聚相,可将式(4 PPdT?相时,相变潜热L 等于两摩尔焓之差: 相转变为 解: 物质在平衡相变中由?H?H L= (1) mm相变潜热随温度的变化率为: ?H?HH?HdPdPdL?mmmm?( 2) ? dTdTTPdT?TP?TTPP?
8、H?C? PT?P)给出 2.28)和(2.210式(?H?V?V?T? ?T?P?PT ?V?VdPdPdL?mm?VT?C?VC? (4)所以 = - ? mPmPdTT?TdTdT?PPdP用克拉伯龙方程代入,得 将式中的 dT?V?VLdLL?mm?C?C? = -? PP?TTT?dTVV?mmPP 这是相变潜热随温度的变化的公式。 ? 相是凝聚相,略去 和 ,并利用,可将式(4如果 )简化为相是气相, dL?CC -= PPdT 3.11根据式(3.4.7),利用上题的结果,计及潜热L是温度的函数,但假设温度的变化范B?ClnA?Tlnp? 围不大,定压热容量可以看作常数,证明蒸汽
9、压方程可以表示为 T 3.4.7)给出了蒸气与凝聚相两相平衡曲线斜率的近似表达式解: 式( 1dPL? )1 ( 2dTpRT?dL?CC? -是温度的函数。给出一般说来,式中的相变潜热L(2) PPdT 在定压热容量看作常量的近似下,式(2)积分得. . ?CC ) (3 L =L+ - 0PP?L C-CdP1?0PP? (4) 代(1) + 22dTpRTRT?B?ClnA?Tlnp? 积分,有 (5) TdVm表示在维持两相平衡的条件下,蒸汽体积随温度的变化3.12蒸汽与液相达到平衡,以 dTdVL11?m?1?率。试证明蒸气的两相平衡膨胀系数为 RTTVdT?m 解: 蒸气的两相平衡
10、膨胀系数为 ?dVdVdVdP11?mmm? (1) ? VdTVdTdPdT?mmTPpV?RT ,则有将蒸气看作理想气体, mdV11?m? VdTT?mPdV11?m? (2) VdPP?mTdPLLP? 在克拉伯龙方程略去液相的摩尔体积。有 (3) 2dTTVRTmdV1L1?m?1? )2)和(3)代入(1,有 (4) 将( VdTTRT?m3.13将范氏气体在不同温度下的等温线的极大点N与极小点J联起来,可以得到一条曲线3pv?a(V?2b) NCJ,如图所示。试证明这条曲线的方程为mRT2a?P -(1证明:范氏方程为) 2V?bVmm?RT2a?P? -(求偏导数得2) ? 3
11、2V?(V?b)V?mmmT?P?0?满足J与极小点等温线的极大点N ? V?mT. . RT2aRT2a?0? 得 即 2323)b(V(V?b)?VVmmmmRT2a?(V?b) -(或3) m3(V?b)Vmm2aa(V?b)?p?)式联立,可得1 将(3)式与( m23VVmm3)2b(V?b)?aV?apV?2a(V 4) -( 或mmmm 的方程。 4)式就是曲线的NCJ(中的状中的状态相应于过饱和蒸汽;区域III中的状态相应于过热液体;区域III图中区域?P?0,不满足平衡稳定性的要求。态是不能实现的,因为这些状态的 ? V?mT(2)(1)?dP?3.16证明爱伦费斯特公式 (
12、2)(1)?dT?(2)(1)c?cdPPP? )(1(2)?dT)?Tv(二级相变在相变点的化学势和化学势的一级偏导数连证明:根据爱伦费斯特对相变的分类,在相变点续,但化学势的二级偏导数存在突变。因此,二级相变没有相变潜热和体积突变,两相的比熵,P+dP)两相的比熵和比体积相等。在邻近的两个相变点(T,P)和(T+dT (1)(2) (1)(2) =dSdS 和比体积的变化也相等,即 dV =dV1-() , ?V?V?VdPdV?VdT?dP?dT? )但 -(2 ?T?P?TP(1)(1)(2)(2)?dPdT?dTdP?(2) (1) ,所以(1由于相变点 V=V)式给出(2)(1)?dP?即 -(3) (1(2)?dT?c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高级月嫂基础知识培训
- 2.2.4细胞-生命活动的基本单位 分层练习(有答案) 高一生物学苏教版必修一
- 高空坠落现场处理课件
- 北京幼师考试笔试真题及答案
- 北京初三政治中考试卷及答案
- 电焊工常规知识培训课件
- 6-Benzylaminopurine-suitable-for-plant-cell-culture-生命科学试剂-MCE
- 高温消防知识培训方案课件
- 保定高一期末考试试题及答案
- 高校地理考试题及答案
- 手足显微外科护理常规
- 2024少儿体适能培训
- 【初中英语】15天背完英语3500词
- 2024上海中考考纲单词
- 成人高考成考大学语文(专升本)试题及答案指导(2025年)
- 网络物理融合系统的韧性分析
- 2025届山东省德州一中高三毕业班第三次统测物理试题含解析
- 小学形容词副词单选题200道及答案(完整版)
- 湘艺版音乐七年级下册第二单元 野蜂飞舞 教学设计教案1000字
- 2025届辽宁省辽南协作校高一物理第二学期期末考试试题含解析
- DZ∕T 0153-2014 物化探工程测量规范(正式版)
评论
0/150
提交评论