2020-2021年华东师大版八年级下册数学教学课件 19.2.2 第1课时 菱形的判定定理1_第1页
2020-2021年华东师大版八年级下册数学教学课件 19.2.2 第1课时 菱形的判定定理1_第2页
2020-2021年华东师大版八年级下册数学教学课件 19.2.2 第1课时 菱形的判定定理1_第3页
2020-2021年华东师大版八年级下册数学教学课件 19.2.2 第1课时 菱形的判定定理1_第4页
2020-2021年华东师大版八年级下册数学教学课件 19.2.2 第1课时 菱形的判定定理1_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、19.2 菱形,第19章 矩形、菱形与正方形,2.菱形的判定,第1课时 菱形的判定定理1,1.运用菱形的定义来判定菱形;(重点) 2.利用菱形的性质(四条边相等)来判定菱形.(难点),一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分 每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题 菱形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边形,,四边形ABCD是菱形.,数学语言,有一组邻边相等的平行四边形叫做菱形.,思考 还

2、有其他的判定方法吗?,小刚:分别以A、C为圆心,以大于 AC的长为半径作弧,两条 弧分别相交于点B , D,依次连接A、B、C、D四点.,已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?,C,A,B,D,想一想:根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?,猜想:四条边相等的四边形是菱形.,讲授新课,证明:AB=BC=CD=AD; AB=CD , BC=AD. 四边形ABCD是平行四边形. 又AB=BC, 四边形ABCD是菱形.,已知:如图,四边形ABCD中,AB=BC=CD=AD. 求证:四边形ABCD是菱形.,证一证,四条边都相等的四边形是菱形,A

3、B=BC=CD=AD,几何语言描述: 在四边形ABCD中,AB=BC=CD=AD,,四边形 ABCD是菱形.,菱形的判定定理:,要点归纳,下列命题中正确的是 ( ) A.一组邻边相等的四边形是菱形 B.三条边相等的四边形是菱形 C.四条边相等的四边形是菱形 D.四个角相等的四边形是菱形,C,练一练,证明: 1= 2, 又AE=AC,AD=AD, ACD AED (SAS). 同理ACFAEF(SAS) . CD=ED, CF=EF. 又EF=ED,CD=ED=CF=EF, 四边形CDEF是菱形.,2,例1 如图,在ABC中, AD是角平分线,点E、F分别在 AB、 AD上,且AE=AC,EF

4、= ED. 求证:四边形CDEF是菱形.,A,C,B,E,D,F,1,典例精析,例2 如图,在ABC中,B90,AB6cm,BC8cm.将ABC沿射线BC方向平移10cm,得到DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形,证明:由平移变换的性质得CFAD10cm,DFAC. B90,AB6cm,BC8cm, ACDFADCF10cm, 四边形ACFD是菱形,四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便,证明:四边形ABCD是矩形,,AB=CD,A=D=90.,点F、E、H为AB、AD、CD 的中点,,AEFDEH,

5、EF=EH,,同理可得EF=EH=HG=FG.,例3 如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.,四边形EFGH是菱形.,拓展 如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?,解:四边形ABCD为平行四边形,,AD=BC,AB=CD,A=C,,四边形EFGH是平行四边形.,点E、F、G、H为各边中点,,AEFCGH,,EF=GH,,同理可得FG=EH,,思考 在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?,A,C,D,B,分析:易知四边形ABCD是

6、平行四边形,只需证一组邻边相等或对角线互相垂直即可.,由题意可知BC边上的高和CD边上的高相等,,然后通过证ABEADF,即得AB=AD.,请补充完整的证明过程,E,F,1.如图,将ABC沿BC方向平移得到DCE,连接AD,下列条件能够判定四边形ACED为菱形的是() AAB=BC BAC=BC CB=60 DACB=60,B,解析:将ABC沿BC方向平移得到DCE, ACDE,AC=DE, 四边形ACED为平行四边形. 当AC=BC时,AC=CE, 平行四边形ACED是菱形 故选B,当堂练习,2.如图,四边形ABCD是平行四边形,延长BA到点E,使AE=AB,连接ED、EC、AC添加一个条件

7、,能使四边形ACDE成为菱形的是() AAB=AD BAB=ED CCD=AE DEC=AD,B,3.如图,在ABC中,AD是BAC的平分线,EF垂直平分AD交AB于E,交AC于F 求证:四边形AEDF是菱形,证明:AD平分BAC,BAD=CAD. 又EFAD,AOE=AOF=90. 在AEO和AFO中 EAOFAO,AOAO,AOEAOF, AEOAFO(ASA), EO=FO,AE=AF. EF垂直平分AD,EF、AD相互平分, 四边形AEDF是平行四边形. 又AE=AF,平行四边形AEDF为菱形,(1)证明:由尺规作BAF的平分线的过程可得AB=AF,BAE=FAE, 四边形ABCD是平行四边形, ADBC,FAE=AEB, BAE=AEB,AB=BE, BE=FA,四边形ABEF为平行四边形, AB=AF, 四边形ABEF为菱形;,4.如图,在平行四边形ABCD中,用直尺和圆规作BAD的 平分线交BC于点E,连接EF (1)求证:四边形ABEF为菱形; (2)AE,BF相交于点O,若BF=6,AB=5,求AE的长,(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论