下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学 第一章 导数及其应用 1.3.3 导数的实际应用学案 新人教b版选修2-2高中数学 第一章 导数及其应用 1.3.3 导数的实际应用学案 新人教b版选修2-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学 第一章 导数及其应用 1.3.3 导数的实际应用学案 新人教b版选修2-2)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您
2、生活愉快 业绩进步,以下为高中数学 第一章 导数及其应用 1.3.3 导数的实际应用学案 新人教b版选修2-2的全部内容。101.3。3 导数的实际应用1了解导数在解决利润最大、效率最高、用料最省等实际问题中的作用(重点)2能利用导数求出某些实际问题的最大值(最小值)(难点、易混点)基础初探教材整理导数在实际生活中的应用阅读教材p30p33“练习”以上部分,完成下列问题1最优化问题生活中经常遇到求_、_、_等问题,这些问题通常称为最优化问题2用导数解决最优化问题的基本思路【答案】1.利润最大用料最省效率最高2.函数导数1做一个容积为256 m3的方底无盖水箱,所用材料最省时,它的高为()a6
3、mb8 mc4 md2 m【解析】设底面边长为x m,高为h m,则有x2h256,所以h。所用材料的面积设为s m2,则有s4xhx24xx2x2.s2x,令s0,得x8,因此h4(m)【答案】c2某一件商品的成本为30元,在某段时间内,若以每件x元出售,可卖出(200x)件,当每件商品的定价为_元时,利润最大【解析】利润为s(x)(x30)(200x)x2230x6 000,s(x)2x230,由s(x)0,得x115,这时利润达到最大【答案】115质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: 小组合作型面积、体积的最
4、值问题请你设计一个包装盒,如图1。3。9,abcd是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得a,b,c,d四个点重合于图中的点p,正好形成一个正四棱柱形状的包装盒,e,f在ab上,是被切去的一个等腰直角三角形斜边的两个端点,设aefbx(cm)图1。3。9(1)某广告商要求包装盒的侧面积s(cm2)最大,试问x应取何值?(2)某厂商要求包装盒的容积v(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值【精彩点拨】弄清题意,根据“侧面积4底面边长高”和“体积底面边长的平方高”这两个等量关系,用x将等量关系中的相关量表示出来,建
5、立函数关系式,然后求最值【自主解答】设包装盒的高为h cm,底面边长为a cm。由已知得ax,h(30x),0x30.(1)s4ah8x(30x)8(x15)21 800,所以当x15时,s取得最大值(2)va2h2(x330x2),v6x(20x)由v0,得x0(舍去)或x20。当x(0,20)时,v0;当x(20,30)时,v0.所以当x20时,v取得极大值,也是最大值此时,即包装盒的高与底面边长的比值为。1解决面积、体积最值问题的思路要正确引入变量,将面积或体积表示为变量的函数,结合实际问题的定义域,利用导数求解函数的最值2解决优化问题时应注意的问题(1)列函数关系式时,注意实际问题中变
6、量的取值范围,即函数的定义域;(2)一般地,通过函数的极值来求得函数的最值如果函数f(x)在给定区间内只有一个极值点或函数f(x)在开区间上只有一个点使f(x)0,则只要根据实际意义判断该值是最大值还是最小值即可,不必再与端点处的函数值进行比较再练一题1将一张26 m 的矩形钢板按如图1.3。10所示划线,要求至全为矩形,且左右对称、上下对称,沿线裁去阴影部分,把剩余部分焊接成一个以为底,为盖的水箱,设水箱的高为x m,容积为y m3.图1。3。10(1)写出y关于x的函数关系式;(2)x取何值时,水箱的容积最大【解】(1)由水箱的高为x m,得水箱底面的宽为(22x) m,长为(3x) m。
7、故水箱的容积为y2x38x26x(0x1)(2)由y6x216x60,解得x(舍去)或x.因为y2x38x26x(0x1)在内单调递增,在内单调递减,所以当x的值为时,水箱的容积最大用料最省、成本(费用)最低问题位于a,b两点处的甲、乙两村合用一个变压器,如图1。311所示,若两村用同型号线架设输电线路,问变压器设在输电干线何处时,所需电线总长最短图1。3.11【精彩点拨】可设cdx km,则ce(3x)km,利用勾股定理得出ac,bc的长,从而构造出所需电线总长度的函数【自主解答】设cdx km,则ce(3x)km。则所需电线总长lacbc(0x3),从而l。令l0,即0,解得x1。2或x6
8、(舍去)因为在0,3上使l0的点只有x1.2,所以根据实际意义,知x1.2就是我们所求的最小值点,即变压器设在de之间离点d的距离为1。2 km处时,所需电线总长最短1用料最省、成本(费用)最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象正确书写函数表达式,准确求导,结合实际作答2利用导数的方法解决实际问题,当在定义区间内只有一个点使f(x)0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值再练一题2甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本p(元)
9、关于速度v(千米/时)的函数关系是pv4v315v,(1)求全程运输成本q(元)关于速度v的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值【解】(1)qp400v26 000(00,v80千米/时时,全程运输成本取得极小值,即最小值,且q最小值q(80)(元)探究共研型利润最大、效率最高问题探究在实际问题中,如果在定义域内函数只有一个极值点,则函数在该点处取最值吗?【提示】根据函数的极值与单调性的关系可以判断,函数在该点处取最值,并且极小值点对应最小值,极大值点对应最大值某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:
10、元/千克)满足关系式y10(x6)2,其中3x6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大【精彩点拨】(1)根据x5时,y11求a的值(2)把每日的利润表示为销售价格x的函数,用导数求最大值【自主解答】(1)因为x5时,y11,所以1011,故a2。(2)由(1)知,该商品每日的销售量y10(x6)2,所以商场每日销售该商品所获得的利润f(x)(x3)210(x3)(x6)2,3x6,从而,f(x)10(x6)22(x3)(x6)30(x4)(x6),于是,当x变化
11、时,f(x),f(x)的变化情况如下表:x(3,4)4(4,6)f(x)0f(x)单调递增极大值42单调递减由上表可得,x4是函数f(x)在区间(3,6)内的极大值点,也是最大值点,所以,当x4时,函数f(x)取得最大值,且最大值等于42。故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大1经济生活中优化问题的解法经济生活中要分析生产的成本与利润及利润增减的快慢,以产量或单价为自变量很容易建立函数关系,从而可以利用导数来分析、研究、指导生产活动2关于利润问题常用的两个等量关系(1)利润收入成本(2)利润每件产品的利润销售件数再练一题3某工厂生产某种产品,已知该产品的月生产量x(吨)
12、与每吨产品的价格p(元/吨)之间的关系式为:p24 200x2,且生产x吨的成本为r50 000200x(元)问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?【解】每月生产x吨时的利润为f(x)x(50 000200x)x324 000x50 000(x0),由f(x)x224 0000,解得x200或x200(舍去)因为f(x)在0,)内只有一个点x200使f(x)0,故它就是最大值点,且最大值为f(200)200324 00020050 0003 150 000(元),故每月生产200吨产品时利润达到最大,最大利润为315万元构建体系1某箱子的体积与底面边长x的关系为v(x)x
13、2(0x60),则当箱子的体积最大时,箱子底面边长为() 【导学号:05410025】a30b40c50d60【解析】v(x)x260xx(x40),因为0x60,所以当0x40时,v(x)0,此时v(x)单调递增;当40x60时,v(x)0,此时v(x)单调递减,所以x40是v(x)的极大值,即当箱子的体积最大时,箱子底面边长为40.【答案】b2已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为yx381x234,则使该生产厂家获取最大年利润的年产量为()a13万件b11万件c9万件d7万件【解析】因为yx281,所以当x9时,y0;当0x9时,y0,所以函数yx3
14、81x234在(9,)上单调递减,在(0,9)上单调递增,所以x9时函数取最大值【答案】c3做一个无盖的圆柱形水桶,若要使水桶的体积是27,且用料最省,则水桶的底面半径为_【解析】设圆柱形水桶的表面积为s,底面半径为r(r0),则水桶的高为,所以sr22rr2(r0),求导数,得s2r,令s0,解得r3.当0r3时,s0;当r3时,s0,所以当r3时,圆柱形水桶的表面积最小,即用料最省【答案】34某产品的销售收入y1(万元)是产量x(千台)的函数:y117x2(x0),生产成本y2(万元)是产量x(千台)的函数:y22x3x2(x0),为使利润最大,应生产_千台【解析】设利润为y,则yy1y2
15、17x2(2x3x2)2x318x2(x0),y6x236x6x(x6)令y0,解得x0或x6,经检验知x6既是函数的极大值点又是函数的最大值点【答案】65某商品每件成本9元,售价30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0x30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件(1)将一个星期的商品销售利润表示成x的函数;(2)如何定价才能使一个星期的商品销售利润最大?【解】(1)若商品降价x元,则多卖的商品数为kx2件,由题意知24k22,得k6.若记商品在一个星期的获利为f(x),则依题意有f(x)(30x9)(4326x2)(21x)(4326x2),所以f(x)6x312
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022~2023乘务员考试考试题库及答案第835期
- 2025年银行销售岗招聘面试题库及答案
- 2025年一年级语文面试题库及答案
- 智能家居系统安全性评估标准考试
- 全国范围内环境保护法律法规试题
- 2026年环境工程原理试题解析
- 公共资源交易监管与风险防范考试及答案
- 2026年环境监测与评价考试及答案
- 《JBT 56114.3-1996漆包圆绕组线产品质量分等 高强度缩醛漆包铜圆线》专题研究报告
- 《JBT 7884.3-2013锯齿轧花机 第3部分:肋条》专题研究报告
- 中建三局安全生产隐患识别口袋书2020版上
- 医疗影像诊断与报告书写规范
- 旅游规划与产品开发
- 2025年税务会计期末试题及答案
- (2025年)麻醉综合疗法在孤独症谱系障碍儿童中临床应用的专家共识
- 2025年广东中考历史试卷真题解读及答案讲评课件
- 全膝关节置换术患者心理因素关联探究:疼痛信念、自我效能与睡眠质量
- 后循环缺血护理常规课件
- T-HAS 148-2025 工厂化菌糠栽培双孢蘑菇技术规程
- 宇树科技在服务机器人市场的竞争策略 课件
- 农村兄弟二人分家协议书范文
评论
0/150
提交评论