第29章投影与视图单元测试与答案_第1页
第29章投影与视图单元测试与答案_第2页
第29章投影与视图单元测试与答案_第3页
第29章投影与视图单元测试与答案_第4页
第29章投影与视图单元测试与答案_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【章节训练】第 29 章 投影与视图 -1一、选择题(共 10 小题)1(2014?漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有( )A 7 盒 B8 盒 C9 盒 D10 盒2(2014?毕节地区)如图是某一几何体的三视图,则该几何体是( )A 三 棱柱 B长方体 C圆柱 D圆锥3(2014?威海)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是( )A B C D4(2014?衡阳)如下图所示的图形是由 7 个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这

2、个立体图形的三视图的是( )A B C D5(2014?东营)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )A B C D6(2014?崇左)下列几何体的主视图、左视图、俯视图的图形完全相同的是( )A 三 棱锥 B长方体 C 三棱柱 D球体7(2014?永州)若某几何体的三视图如图,则这个几何体是( )A B C D8(2014?黔南州)形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是( )A B C D9(2014?宜宾)如图 1 放置的一个机器零件,若其主(正)视图如图 2,则其俯视图是(

3、)A B C D10(2014?遂宁)一个几何体的三视图如图所示,这个几何体是( )A 棱柱 B圆柱 C圆锥 D球二、填空题(共 5 小题)(除非特别说明,请填准确值)11(2014 ?简阳市模拟)如图是某几何体的三视图,该几何体的表面积是 _ 2 12(2012?南湖区二模)一个几何体的三视图如图所示,则这个几何体的表面积是 _ cm13(2014?南京联合体一模)如图是某个几何体的三视图,计算该几何体的侧面积为 _ 14(2014?拱墅区二模)如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,

4、所需胶带长度至少为_ (若结果带根号则保留根号)15(2013 ?绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是 _ 三、解答题(共 9 小题)(选答题,不自动判卷)16(2011?顺城区二模)某加工厂要加工一批密封罐,设计者给出了密封罐的三视图,请按照三视图确定制作每个密封罐所需钢板的面积17(2009?崇安区一模) ( 1)夜晚,小明在路灯下散步已知小明身高 1.5 米,路灯的灯柱高 4.5 米 如图1,若小明在相距 10 米的两路灯 AB 、 CD 之间行走(不含两端) ,他前后的两个影子长分别为 FM=x 米,FN=y 米,试

5、求 y 与 x 之间的函数关系式,并指出自变量 x 的取值范围? 有言道:形影不离其原意为:人的影子与自己紧密相伴,无法分离但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱 PQ 前,朝着影子的方向(如图箭头) ,以 0.8 米/秒的速度匀速行走,试求他影子的顶端 R 在地面上移动的速度(2)我们知道, 函数图象能直观地刻画因变量与自变量之间的变化关系 相信,大家都听说过龟兔赛跑的故事吧 现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定 比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,

6、遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离 s 与出发时间t 的函数图象示意图 (实线表示乌龟,虚线表示兔子)18(2010?自贡)作出下面立体图形的三视图19(2010?永州)如图所示是一个直四棱柱及其正视图和俯视图(等腰梯形) (1)根据图中所给数据,可得俯视图(等腰梯形)的高为_ ;(2)在虚线框内画出其左视图,并标出各边的长 (尺规作图,不写作法,保留作图痕迹)20(2009?庆阳)一位美术老师在课堂上进行立

7、体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图) 21(2011?广州) 5 个棱长为 1 的正方体组成如图的几何体(1)该几何体的体积是 _ (立方单位) ,表面积是 _ (平方单位)(2)画出该几何体的主视图和左视图22(2009?衢州)一个几何体的三视图如图所示,它的俯视图为菱形请写出该几何体的形状,并根据图中所给的数据求出它的侧面积23(2009?沈阳模拟)如图是一个由若干个棱长相等的正方体构成的几何体的三视图(1)请写出构成这个几何体的正方体个数;(2)请根据

8、图中所标的尺寸,计算这个几何体的表面积24(2009?杭州)如图是一个几何体的三视图(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点 B 出发,沿表面爬到 AC 的中点 D,请你求出这个线路的最短路程【章节训练】第 29 章 投影与视图 -1参考答案与试题解析一、选择题(共 10 小题)1(2014?漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有( )A 7 盒 B8 盒 C9 盒 D10 盒考点: 由三视图判断几何体分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答:

9、解:易得第一层有 4 碗,第二层最少有 2 碗,第三层最少有 1 碗,所以至少共有 7 盒故选: A点评: 考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀 “俯视图打地基,正视图疯狂盖,左视图拆违章 ”就更容易得到答案2(2014?毕节地区)如图是某一几何体的三视图,则该几何体是( )A 三 棱柱 B长方体 C圆柱 D圆锥考点: 由三视图判断几何体分析: 三视图中有两个视图为矩形,那么这个几何体为柱体,根据第 3 个视图的形状可得几何体的具体形状解答: 解: 三视图中有两个视图为矩形, 这个几何体为柱体, 另外一个视图的形状为圆, 这个几何体为圆柱体,

10、故选: C点评: 考查由三视图判断几何体;用到的知识点为:三视图中有两个视图为矩形,那么这个几何体为柱体,根据第 3 个视图的形状可得几何体的形状3(2014?威海)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是( )A B C D考点: 简单组合体的三视图专题: 几何图形问题分析: 主视图、左视图、俯视图是分别从正面、左面、上面所看到的图形解答:解: A、此几何体的主视图和俯视图都是 “ ”字形,故 A 选项不合题意;B、此几何体的主视图和左视图都是 ,故 B 选项不合题意;C、此几何体的主视图和左视图都是

11、 ,故 C 选项不合题意;D、此几何体的主视图是 ,俯视图是 ,左视图是 ,故 D 选项符合题意,故选: D点评: 此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中4(2014?衡阳)如下图所示的图形是由 7 个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )A B C D考点: 简单组合体的三视图分析: 根据几何体组成,结合三视图的观察角度,进而得出答案解答: 解:根据立方体的组成可得出:A 、是几何体的左视图,故此选项错误;B、不是几何体的三视图,故此选项正确;C、是几何体的主视图,故此选项错误;D、是几何体的俯视图,故此

12、选项错误;故选: B点评: 此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键5(2014?东营)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )A B C D考点: 由三视图判断几何体;简单组合体的三视图分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答: 解:从俯视图可以看出直观图的各部分的个数,可得出左视图前面有 2 个,中间有 3 个,后面有 1 个,即可得出左视图的形状故选: B点评: 此题主要考查了三视图的概念根据俯视图得出每一组小正方体的个数是解决问题的关键6(2014?崇

13、左)下列几何体的主视图、左视图、俯视图的图形完全相同的是( )A 三 棱锥 B长方体 C 三棱柱 D球体考点: 简单几何体的三视图分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答: 解: A、三棱锥的主视图、左视图都是三角形,俯视图为三角形多一点,故 A 选项错误;B、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形,故 B 选项错误;C、三棱柱的主视图和左视图是一个矩形,俯视图是一个三角形,故 C 选项错误;D、球体的主视图、左视图、俯视图都是圆形;故 D 选项正确;故选: D点评: 本题考查三视图的有关知识,本题只要清楚了解各个几何体的三

14、视图即可求解7(2014?永州)若某几何体的三视图如图,则这个几何体是( )A B C D考点: 由三视图判断几何体分析: 如图:该几何体的正视图与俯视图均为矩形,侧视图为三角形和一个矩形,易得出该几何体的形状解答: 解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形和一个矩形,故选: C点评: 本题是个简单题,主要考查的是三视图的相关知识8(2014?黔南州)形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是( )A B C D考点: 简单组合体的三视图专题: 图表型分析: 由实物结合它的俯视图,还原它的具体形状和位置,再判断主视图解答: 解:由实物结合它

15、的俯视图可得该物体是由两个长方体木块一个横放一个竖放组合而成,由此得到它的主视图应为选项 D故选: D点评: 本题考查了物体的三视图在解题时要注意,看不见的线画成虚线9(2014?宜宾)如图 1 放置的一个机器零件,若其主(正)视图如图 2,则其俯视图是( )A B C D考点: 简单组合体的三视图专题: 常规题型分析: 找到从上面看所到的图形即可解答: 解:从上面看可得到左右相邻的 3 个矩形故选: D点评: 本题考查了三视图的知识,俯视图是从物体的上面看到的视图10(2014?遂宁)一个几何体的三视图如图所示,这个几何体是( )A 棱柱 B圆柱 C圆锥 D球考点: 由三视图判断几何体分析:

16、 根据三视图确定该几何体是圆柱体解答: 解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱故选: B点评: 本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识二、填空题(共 5 小题)(除非特别说明,请填准确值)11(2014 ?简阳市模拟)如图是某几何体的三视图,该几何体的表面积是 72+108 考点: 由三视图判断几何体分析: 首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可解答: 解:观察该几何体的三视图发现该几何体为正六棱柱;该六棱柱的高为 2,正六边形的半径为 6,所以表面积为 266+663 =72

17、+108 ,故答案为: 72+108 点评: 本题考查由三视图求表面积,考查由三视图还原直观图,注意求面积时,由于包含的部分比较多,不要漏掉,本题是一个基础题2 12(2012?南湖区二模)一个几何体的三视图如图所示,则这个几何体的表面积是 1300 cm考点: 由三视图判断几何体;几何体的表面积分析: 由题意推知几何体长方体,长、宽、高分别为 20,、10,、15,可求其表面积解答: 解:由题意推知几何体长方体,长、宽、高分别为 20,、10,、15,所以其面积为: 2(1015+1020+2015)=1300cm 2故答案为: 1300点评: 本题考查三视图、圆柱的表面积,考查简单几何体的

18、三视图的运用培养同学们的空间想象能力和基本的运算能力基础题13(2014?南京联合体一模)如图是某个几何体的三视图,计算该几何体的侧面积为 32 考点: 由三视图判断几何体分析: 首先根据左视图和确定俯视图的三角形的高为 4,从而确定俯视图中等腰三角形的腰长, 然后计算三个长方形的面积的和即为侧面积解答: 解:根据左视图知:如图, AD=4 ,由勾股定理得到 AB=5 , 该三棱柱的侧面积为 252+62=32,故答案为: 32点评: 本题考查了由三视图判断几何体的知识,解题的关键是确定该几何体的形状,难度中等14(2014?拱墅区二模)如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由

19、矩形构成,主视图中大矩形边长如图所示, 左视图中包含两全等的矩形, 如果用彩色胶带如图包扎礼盒, 所需胶带长度至少为 (120 +90)cm (若结果带根号则保留根号)考点: 由三视图判断几何体分析: 由正视图知道,高是 15cm,两顶点之间的最大距离为 40cm,应利用正六边形的性质求得底面对边之间的距离,然后所有棱长相加即可解答: 解:根据题意,作出实际图形的上底,如图: AC ,CD 是上底面的两边作 CBAD 于点 B,则 BC=10 ,AC=20 ,ACD=120 ,那么 AB=AC sin60=10 ,所以 AD=2AB=20 ,胶带的长至少 =20 6+156=120 +90(c

20、m)故答案为: (120 +90)cm点评: 本题考查立体图形的三视图和学生的空间想象能力;注意知道正六边形两个顶点间的最大距离求对边之间的距离需构造直角三角形利用相应的三角函数求解15(2013 ?绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是 4 或 5 考点: 由三视图判断几何体分析: 易得这个几何体共有 2 层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可解答: 解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小

21、正方体,而右侧可能是一行单层一行两层,出可能两行都是两层所以图中的小正方体最少 4 块,最多 5 块故答案为: 4 或 5点评: 考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查三、解答题(共 9 小题)(选答题,不自动判卷)16(2011?顺城区二模)某加工厂要加工一批密封罐,设计者给出了密封罐的三视图,请按照三视图确定制作每个密封罐所需钢板的面积考点 : 由三视图判断几何体专题: 数形结合分析: 根据三视图可以得出该几何体是正六棱柱,分别求出上下底的面积和侧面积,相加即可解答: 解: S=2S 六边形 +6S长方形 ,=26 50(50sin60)+65050,

22、=7500 +15000 故每个密封罐所需钢板的面积为 7500 +15000点评: 本题考查了由该三视图中的数据确定正六棱柱的底面边长和高是解本题的关键,体现了数形结合的数学思想17(2009?崇安区一模) ( 1)夜晚,小明在路灯下散步已知小明身高 1.5 米,路灯的灯柱高 4.5 米 如图1,若小明在相距 10 米的两路灯 AB 、 CD 之间行走(不含两端) ,他前后的两个影子长分别为 FM=x 米,FN=y 米,试求 y 与 x 之间的函数关系式,并指出自变量 x 的取值范围? 有言道:形影不离其原意为:人的影子与自己紧密相伴,无法分离但在灯光下,人的速度与影子的速度却不是一样的!如

23、图2,若小明在灯柱 PQ 前,朝着影子的方向(如图箭头) ,以 0.8 米/秒的速度匀速行走,试求他影子的顶端 R 在地面上移动的速度(2)我们知道, 函数图象能直观地刻画因变量与自变量之间的变化关系 相信,大家都听说过龟兔赛跑的故事吧 现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定 比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜根据新版龟兔赛跑的故事情节,请在同

24、一坐标系内(如图3),画出乌龟、兔子离开终点的距离 s 与出发时间t 的函数图象示意图 (实线表示乌龟,虚线表示兔子)考点 : 中心投影;函数的图象;相似三角形的应用专题:阅读型分析: ( 1)易证MEF MAB ,根据相似三角形的对应边的比相等可以把 BF 用 x 表示出来,同理, DF 也可以用 y 表示出来根据 BD=10 ,就可以得到 x,y 的一个关系式,从而求出函数的解析式根据 REFRPQ 就可以求出 PE 与 RP 的比值,同理根据 PEEPRR,求得 EE与 RR的比值则影子的速度就可以得到( 2)根据故事的叙述,就可以作出图象解答: 解:(1)EF AB , MEF= A

25、,MFE= B MEFMAB = = = = ,MB=3x BF=3xx=2x 同理, DF=2y (2 分) BD=10 2x+2y=10 y=x+5 (3 分) 当 EF 接近 AB时,影长FM 接近 0;当 EF 接近 CD时,影长FM 接近 5 0x5 (4 分) 如图,设运动时间为t 秒,则EE=FF=0.8t EFPQ REF= RPQ,RFE=RQP REFRPQ (6 分) EERR PEE=PRR,PEE=PRR PEEPRR (8 分) RR=1.2t (9 分)( 2)如图3 所示 (2 分)点评: 本题主要考查了相似三角形的性质,相似三角形的对应边的比相等18(2010

26、?自贡)作出下面立体图形的三视图考点: 作图 -三视图分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答: 解:点评: 本题考查了几何体的三种视图,掌握定义是关键注意看得到的棱画实线,看不到的棱画虚线19(2010?永州)如图所示是一个直四棱柱及其正视图和俯视图(等腰梯形) (1)根据图中所给数据,可得俯视图(等腰梯形)的高为 4 ;(2)在虚线框内画出其左视图,并标出各边的长 (尺规作图,不写作法,保留作图痕迹)考点: 由三视图判断几何体;勾股定理;作图 -三视图分析: (1)过上底的顶点向对边引垂线组成直角三角形求解即可;(2)易得左视图为长方形,宽等于( 1)

27、中算出的梯形的高,高等于正视图图中的 10解答: 解:(1)4(3 分)作 AEBC 于点 E,则 BE=(82)2=3,高 AE= =4(2)(6 分)点评: 用到的知识点为:求等腰梯形的问题常用辅助线是做等腰梯形的高;左视图反映几何体的宽与高20(2009?庆阳)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图) 考点: 作图 -三视图专题: 作图题分析: 认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个三角形,俯视图为正方形中

28、间一个有圆心的圆解答: 解:正确的三视图如图所示:主视图正确; (2 分)左视图正确; (2 分)俯视图正确 (3 分)说明:俯视图中漏掉圆心的黑点扣( 1 分)点评: 本题考查实物体的三视图在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉21(2011?广州) 5 个棱长为 1 的正方体组成如图的几何体(1)该几何体的体积是 5 (立方单位) ,表面积是 22 (平方单位)(2)画出该几何体的主视图和左视图考点: 作图 -三视图专题: 作图题分析: (1)几何体的体积为 5 个正方体的体积和,表面积为 22 个正方形的面积;(2)主视图从左

29、往右看 3 列正方形的个数依次为 2,1,2;左视图 1 列正方形的个数为 2解答: 解:(1)每个正方体的体积为 1, 组合几何体的体积为 51=5; 组合几何体的前面和后面共有 52=10 个正方形,上下共有 6 个正方形,左右共 6 个正方形,每个正方形的面积为 1, 组合几何体的表面积为 22故答案为: 5,22;(2)作图如下:点评: 考查组合几何体的计算和三视图的画法;用到的知识点为:主视图,左视图分别是从物体的正面和左面看到的平面图形22(2009?衢州)一个几何体的三视图如图所示,它的俯视图为菱形请写出该几何体的形状,并根据图中所给的数据求出它的侧面积考点: 由三视图判断几何体分析: 有三视图可看出这个图形是个四棱柱,然后根据底面菱形的对角线求出菱形的边长,然后求出侧面积解答: 解:该几何体的形状是直四棱柱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论