《线面、面面平行的判定和性质》新课程高三一轮复习课件_第1页
《线面、面面平行的判定和性质》新课程高三一轮复习课件_第2页
《线面、面面平行的判定和性质》新课程高三一轮复习课件_第3页
《线面、面面平行的判定和性质》新课程高三一轮复习课件_第4页
《线面、面面平行的判定和性质》新课程高三一轮复习课件_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、重点难点 重点:线面、面面平行的判定定理与性质定理及应用 难点:定理的灵活运用,知识归纳 一、直线与平面平行 1判定方法 (1)用定义:直线与平面无公共点,二、平面与平面平行 1判定方法 (1)用定义:两个平面无公共点,3两条直线被三个平行平面所截,截得线段对应成比例,误区警示 1应用线面平行、面面平行的判定定理与性质定理时,条件不足或条件与结论不符是常见的错误,解决的方法是弄清线线、线面、面面平行关系的每一个定理的条件和结论,明确这个定理是干什么用的,具备什么条件才能用其中线面平行的性质定理是核心,证题时,找(或作)出经过已知直线与已知平面相交的平面是解题的关键,另外在证明平行关系时,常见错

2、误是(1)“两条直线没有公共点则平行”;(2)“垂直于同一条直线的两直线平行”,不恰当的把平面几何中的一些结论迁移到立体几何中来,解决的关键是先说明它们在同一个平面内,2注意弄清“任意”、“所有”、“无数”、“存在”等量词的含义 3注意应用两平面平行的性质定理推证两直线平行时,不是两平面内的任意直线,必须找或作出第三个平面与两个平面都相交,则交线平行 应用二面平行的判定定理时,两条相交直线的“相交”二字决不可忽视 4要注意符合某条件的图形是否惟一,有无其它情形,一、转化的思想 解决空间线面、面面平行关系的问题关键是作好下列转化 二、解题技巧 要能够灵活作出辅助线、面来解题,作辅助线、面一定要以

3、某一定理为理论依据,例1已知m、n是不同的直线,、是不重合的平面,给出下列命题: 若m,则m平行于平面内的任意一条直线 若,m,n,则mn 若m,n,mn,则 若,m,则m 上面命题中,真命题的序号是_(写出所有真命题的序号),解析:若m,则m平行于过m作平面与相交的交线,并非内任一条直线,故错; 若,m,n,则可能mn,也可能m、n异面,故错;,答案: 点评:解决这类问题首先要熟悉线面位置关系的各个定理,如果是单项选择,则可以从中先选最熟悉最容易作出判断的选项先确定或排除,再逐步考察其余选项要特别注意定理所要求的条件是否完备,图形是否有特殊情形等,(2010浙江理)设m,l是两条不同的直线,

4、是一个平面,则下列命题正确的是() a若lm,m,则l b若l,lm,则m c若l,m,则lm d若l,m,则lm 解析:两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面,故选b. 答案:b,例2(文)在四面体abcd中,cbcd,adbd,且e,f分别是ab,bd的中点求证: (1)直线ef平面acd; (2)平面efc平面bcd.,解析:(1)在abd中,因为e、f分别是ab、bd的中点,所以efad. 又ad平面acd,ef平面acd, 所以直线ef平面acd. (2)在abd中,因为adbd,efad,所以efbd. 在bcd中,因为cdcb,f为bd的中点,所以cfbd. 因

5、为ef平面efc,cf平面efc,ef与cf交于点f,所以bd平面efc.,又因为bd平面bcd,所以平面efc平面bcd. (理)如图,四边形abcd为矩形,bc平面abe,f为ce上的点,且bf平面ace. (1)求证:aebe; (2)设点m为线段ab的中点,点n为线段ce的中点,求证:mn平面dae.,证明:(1)因为bc平面abe,ae平面abe, 所以aebc. 又bf平面ace,ae平面ace, 所以aebf. 又bfbcb, 所以ae平面bce. 又be平面bce,所以aebe.,故四边形amnp是平行四边形所以mnap, 而ap平面dae,mn平面dae,所以mndae. 证

6、法二:取be中点g,连结gm、gn,gnbc,bcda,gnda,又gmae,平面mgn平面dae,从而证明mn平面dae.,四边形agef为平行四边形, afeg, eg平面bde,af平面bde, af平面bde. (2)连结fg. efcg,efcg1且ce1, 四边形cefg为菱形, egcf. 四边形abcd为正方形,acbd. 又平面acef平面abcd且平面acef平面abcdac,bd平面acef,cfbd. 又bdegg,cf平面bde.,例3(2010山东青岛)在直四棱柱abcda1b1c1d1中,aa12,底面是边长为1的正方形,e、f、g分别是棱b1b、d1d、da的中

7、点 (1)求证:平面ad1e平面bgf; (2)求证:d1e平面aec.,证明:(1)e,f分别是棱bb1,dd1的中点, be綊d1f.四边形bed1f为平行四边形d1ebf. 又d1e平面ad1e,bf平面ad1e, bf平面ad1e. 又g是棱da的中点,gfad1. 又ad1平面ad1e,gf平面ad1e, gf平面ad1e. 又bfgff,平面ad1e平面bgf.,acbd,acd1d,ac平面bdd1b1. 又d1e平面bdd1b1,acd1e. 又acaea,d1e平面aec.,(2010大连模拟)平面平面的一个充分条件是 () a存在一条直线a,a,a b存在一条直线a,a,a

8、 c存在两条平行直线a、b,a、b、a、b d存在两条异面直线a、b,a、b、a、b,解析:在正方形abcda1b1c1d1中,取abcd为,add1a1为,b1c1为直线a,可知a错;如图(1),l,a,al,可知满足b的条件,故b错;如图(2),l,a,b,al,bl,满足a,b,故c错;由面面平行的判定定理知d正确 答案:d,例4用平行于四面体abcd一组对棱ab、cd的平面截此四面体(如图) (1)求证:所得截面mnpq是平行四边形; (2)如果abcda.求证:四边形mnpq的周长为定值;,(3)如果aba,cdb,ab、cd成角求四边形mnpq面积的最大值,并确定此时点m的位置 分

9、析:(1)由ab平面mnpq及线面平行的性质定理得到四边形一组对边平行,由cd平面mnpq得到另一组对边平行 (2)由平行得到比例关系,将四边形mnpq的两邻边的和用ab(cd)表达出来 (3)利用正弦定理将四边形面积用两邻边表示,设四边形一个顶点(如m)到四面体的m所在棱的端点的距离为x(如amx),将面积表达为x的函数求极值,解析:(1)ab平面mnpq. 平面abc平面mnpqmn.且ab平面abc. 由线面平行的性质定理知, abmn.同理可得pqab. 由平行公理可知mnpq. 同理可得mqnp. 截面四边形mnpq为平行四边形,又abcda,mnmqa. 平行四边形mnpq的周长为

10、 2(mnmq)2a定值 (3)设acc,amx.由(1)得:,如图所示,平面四边形abcd的四个顶点a、b、c、d均在平行四边形abcd所确定的平面外,且aa、bb、cc、dd互相平行求证:四边形abcd是平行四边形,分析:欲证四边形abcd为平行四边形,须证其两组对边分别平行,欲证adbc,从图中可见ad、bc是平面abcd与平面aadd和bbcc的交线,故只须证平面aadd平面bbcc.abcd同样可找到证明思路,解析:四边形abcd是平行四边形,adbc.aabb,且aa、ad是平面aadd内的两条相交直线,bb、bc是平面bbcc内的两条相交直线,平面aadd平面bbcc.又ad、b

11、c分别是平面abcd与平面aadd、平面bbcc的交线,故adbc.同理可证abcd.四边形abcd是平行四边形.,例5如图,四边形abcd为矩形,ad平面abe,aeebbc2,f为ce上的点,且bf平面ace. (1)求三棱锥daec的体积; (2)设m在线段ab上,且满足am2mb,试在线段ce上的确定一点n,使得mn平面dae.,解析:(1)ad平面abe,adbc, bc平面abe,则aebc. bf平面ace,则aebf, bcbfb,且bc、bf平面bce, ae平面bce,又be平面bce,aebe.,mgae,mg平面ade,ae平面ade,mg平面ade,同理,gn平面ad

12、e,平面mgn平面ade. 又mn平面mgn,mn平面ade. n点为线段ce上靠近c点的一个三等分点,(文)(2010烟台中英文学校质检)如图,在四棱锥pabcd中,底面abcd是菱形,abc60,pa平面abcd,点m,n分别为bc,pa的中点,且paab2.,(1)证明:bc平面amn; (2)求三棱锥namc的体积; (3)在线段pd上是否存在一点e,使得nm平面ace;若存在,求出pe的长,若不存在,说明理由 解析:(1)因为abcd为菱形,所以abbc, 又abc60,所以abbcac, 又m为bc中点,所以bcam 而pa平面abcd,bc平面abcd,所以pabc, 又paam

13、a,所以bc平面amn.,(1)求证:平面pac平面pcd; (2)在棱pd上是否存在一点e,使ce平面pab?若存在,请确定e点的位置;若不存在,请说明理由,由勾股定理得accd, 又pa平面abcd,cd平面abcd, pacd,paaca,cd平面pac, 又cd平面pcd,平面pac平面pcd. (2)证明:作cfab交ad于f,作efap交pd于e,连接ce, cfab,efpa,cfeff,paaba, 平面efc平面pab, 又ce在平面efc内,ce平面pab,,e为pd中点,故棱pd上存在点e,且e为pd中点,使ce平面apb.,一、选择题 1(2010山东文,4)在空间,下

14、列命题正确的是 () a平行直线的平行投影重合 b平行于同一直线的两个平面平行 c垂直于同一平面的两个平面平行 d垂直于同一平面的两条直线平行 答案d,解析当两平行直线都与投影面垂直时,其在内的平行投影为两个点,当两平行直线所在平面与投影面相交但不垂直时,其在内的平行投影可平行,故a错;在正方体abcda1b1c1d1中,直线aa1与平面bcc1b1及平面cdd1c1都平行,但平面bcc1b1与平面cdd1c1相交,故b错;同样,在正方体abcda1b1c1d1中,平面bcc1b1及平面cdd1c1都与平面abcd垂直,但此二平面相交,故c错;由线面垂直的性质定理知d正确,2(2010胶州三中

15、)已知有m、n为两条不同的直线,、为两个不同的平面,则下列命题中正确的命题是 () a若m,n,m,n,则 b若m,n,则mn c若m,mn,则n d若mn,n,则m 答案d,解析a中两直线m与n相交时,才能得出结论,故a错;b中分别在两个平面内的两条直线可能平行,也可能异面,故b错;c中n可能在平面内,故c错,aehfg b四边形efgh是矩形 c是棱柱 d是棱台 答案d 解析eha1d1,a1d1b1c1,ehb1c1 b1c1平面efgh,b1c1fg, ehfg,四边形efgh是矩形,是棱柱,故选d.,4如果直线l、m与平面、满足l,l,m和m,那么必有() am且lmb且 c且m d

16、且lm 答案d,请同学们认真完成课后强化作业,1(2010寿光现代中学)已知直线m,n,l是互不重合的直线,平面,是互不重合的平面,给出下列四个命题: (1)m,la,am,则l与m不共面; (2)l,m是异面直线,l,m,且nl,nm,则n; (3)若l,m,lma,l,m,则; (4)若l,m,则lm. 其中为真命题的是(),a(1)(2) b(1)(2)(3) c(1)(3) d(2)(3)(4) 答案b 解析根据异面直线的定义,容易判断命题(1)正确;对于命题(2),对于l,m,故在平面内可找到两条直线l,m分别与l,m平行,同时由于l,m是异面直线,故l,m必定为相交直线,再由nl,nm,可得nl,nm,故n;对于命题(3),根据两平面平行的判定定理可知其为真命题;对于命题(4),易知l,m的位置关系是不确定的综上可得,真命题是(1)(2)(3),2(2010西城测试)如图,平面平面,l,a,c是内不同的两点,b,d是内不同的两点,且a,b,c,d直线l,m,n分别是线段ab,cd的中点下列判断正确的是(),a当cd2ab时,m,n两点不可能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论