




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四章第四章 内燃机的充量更换(换内燃机的充量更换(换 气过程)气过程) 引言 从排气门或排气口开启(对二 冲程内燃机而言)至进气门或排气口关闭的整个阶段, 亦即为四冲程发动机的进排气过程或二冲程发动机的扫 气过程。 是将已燃气体排出并为下一 循环吸人新鲜充量。 ,是 ,这取决于与 充量更换过程有关的各种附属系统的设计是否合理、有 效,也与发动机的运行状态有关。 采用可以提高进气密度,改善换气质量,提高发 动机的升功率。 图4-1是四冲程内燃机在换气过程中,气缸压力、排气管中的 压力随曲轴转角的变化情况以及相应的低速示功图(p-V图)、 从图中可以看出,燃气从气缸急速流人排气 管,气缸压力很快
2、下降,直到排气下止点后的某一位置排气 门关闭为止。,新鲜充量流人气缸, 直到进气下止点后的某一位置关闭为止。在排气上止点附近, 近、排气门同时开启。四冲程内燃机的换气过程可分为 ,本节分别介绍各 阶段的特点,并在分析换气损失的基础上提出提高 的措施。 排气提前:提前开启的必要性分析 由于受配气机构的结构限制,气门在开启过程中只能逐渐加大其流通截 面:如果排气门刚好在膨胀行程下止点时开启,则排气门流通截面 增加过缓,气缸压力下降迟缓,活塞在向上止点回行时将造成较大 的反压力,增加排气行程所消耗的功。所以,内燃机的排气门往往 都在膨胀行程到达末期前,即活塞到达下止点前的某一位置提前开 启,称为排气
3、提前:排气提前角为3080(CA)。 排气门刚打开时,缸内压力远高于排气管内压力,随着排气过程进行以 及排气门流通截面的逐渐增大,排气管内的压力将逐渐升高,直至 在某一时刻达到或接近缸内压力。这一阶段由于有正向压力差的存 在,排气可以自发地进行,故把从排气门开启到气缸压力达到排气 背压(排气管内压力)的时期,称为自由排气阶段。 一、自由排气阶段 排气门开启需要时间 利用缸内压力排气 减小活塞上行时的排 气阻力 排气提前角过大会减 小活塞功 在气门开启时间内,流经气门的气体质量与气门前后的状态关系式为 式中,下标I表示上游流动参数(相应地,II表示下游的流动参数);与A分别为 气门处的流量系数与
4、流通截面积,可分别根据试验结果和气门的几何参数确 定;为流函数,与上、下游的流动状态有关,其计算式为 11 6 1 pA nd dm 在自由排气阶段的初期,由于排气门刚刚开启,缸内压力较高,排气 管压力与气缸压力之比往往小于临界值 ,流动呈现超临界状态, 缸内气体以当地声速流过排气门。此时,排气质量流量只取决于缸内气 体状态和排气门有效开启截面的大小,与排气管内的气体状态无关。 随着排气的进行,排气门流通截面不断增大,排气管压力与气缸压力 之比超过临界值 之后,气体流动逐渐进入亚临界状态;直到某 一时刻气缸压力与排气管内的气体压力接近相等,自由排气阶段结束。 在该阶段中流出的气体质量,不仅与排
5、气门的有效流通截面有关,还与 缸内和排气管内的压力差有关。 由此可见,自由排气阶段中排出的废气量与内燃机的转速无关,但在 高速时,同样的排气时间对应的曲轴转角将大为增加。为使气缸压力及 时下降,必须加大排气提前角,否则将使自由排气阶段(以曲轴转角计) 延长、排气消耗功增加。所以,随发动机转速的增加应相应增大排气提 前角。 自由排气阶段虽然占整个排气时间的比例不大,但由于排气流 速很高,排出的废气量可达60%以上,一般持续到下止点后1030(CA) 结束。 1 ) 1 2 ( k k k 1 ) 1 2 ( k k k 自由排气阶段结束后,气缸内的废气将被上行活塞强制推出,直到排气 门关闭这一过
6、程就是强制排气阶段强制排气阶段。由于气体在流动过程中要克服排气 门、排气道以及消声器等处的流动阻力,缸内的气体压力要略高于排气管 内的平均压力,而且气体流速越高,压力差也就越大。另一方面,由于气 体在排气管内的压力波动,有可能形成压力逆差,即气缸压力低于排气管 内的用力,这种情况往往出现在排气管较长时强制排气开始的初期。因此, 缸内气体的状态由活塞的运动速度与位置、气门有效流通截面的变化规律缸内气体的状态由活塞的运动速度与位置、气门有效流通截面的变化规律 以及排气管内的气体状态等共同决定以及排气管内的气体状态等共同决定。 二、强制排气阶段 随着活塞的上行,排气门流通截面开始逐渐减小,气体流经气
7、门的 节流作用加强,因而在上止点附近,气缸压力再次升高,其直接后果 是,排气所消耗的功与缸内的残余废气量都增加了,这对于换气与燃 烧过程都不利。因此,排气门不允许刚好在活塞到达上止点时关闭, 而应当在上止点后一定角度时关闭,这就是。排气迟闭期间, 可以利用缸内气体流动惯性从气缸内抽吸部分废气,实现过后排气, 但由于到达上止点后活塞已开始下行,气缸容积不断增加,过大的排 气迟闭会导致废气倒流。当废气从气缸流出的流动过程刚刚停止时,当废气从气缸流出的流动过程刚刚停止时, 就是理想的排气门关闭时刻,就是理想的排气门关闭时刻, 排气迟闭的必要性分析排气迟闭的必要性分析 利用排气的流 动惯性实现过 后排
8、气 避免在上止点 附近增加排气 阻力 迟闭角过大会 导致排气倒流 三 进气过程 从进气门开启到关闭的全过程都是进气过程。为了使在进气过程开始时,进气门 有一定的流通截面,以减少进气过程的阻力,增加进入的新鲜充量,进气门一般 也在上止点前提前开启,称为进气提前,进气提前角为1040(CA)。在进 气过程中,新鲜充量真正吸入,要等到气缸内残余废气膨胀到低于进气管内压力 才开始。 在进气初期,活塞下行造成缸内体积的膨胀,加上气门开启还不充分,缸 内的压力有一段短时间迅速降低,这为新鲜充量的顺利流入创造了条件。 随着进气门流通截面积加大,进入气缸的新鲜充量不断增加,另外,已进 入气缸的新鲜充量被温度较
9、高的燃烧室表面和残余废气所加热,气缸压力逐渐升 高。 到进气终了,一部分充量的动能转变为压力能,由于涡流和湍流的作用, 另一部分动能转变为热能,从而加热进气,于是新鲜充量的温度与压力都有所提 高。 为了利用进气管内气流的流动惯性,进气门在下止点过后的一定角度时延 迟关闭,即进气迟闭,以实现气缸的过后充气。这样,有可能在进气过程终了时, 使缸内压力等于或略高于进气管压力。进气迟闭角一般为2060(CA),高 速时应大一些。 但过大的进气迟闭角,会使得低速时发生缸内气流倒流进入进气管的现象, 会减少有效压缩比,使发动机的冷起动困难。 在排气行程上止点附近出现进、排气门同时开启的特殊现象,通 常将这
10、一现象称为,相应的角度是气门叠开角,它是排气迟 闭角与进气提前角之和。 气门叠开将导致气门叠开将导致: 如果进气管压力大于排气管压力,新鲜充量在正向压力差的作用下 流入气缸,与缸内残余废气进行混合后,部分可以直接排入排气管中。 有利于扫除缸内的残余废气,增加气缸充量,达到扫气目的; 又可以降低燃烧室内气缸盖、排气门、活塞顶、缸套的温 度。尽管带走的热量不多,但对于这些受热严重且冷却困难的关键零 件,其效果却是显著的。 四、气门叠开和燃烧室扫气过程 配 气 相 位 图 对于而言,由于它是采用节气门来调节内燃机的功率,进气管内 压力总是低于大气压,特别是在小开度时更是如此。叠开角过大时高温废气 有
11、可能倒流进入进气管乃至燃料供应系统中,引起进气管回火同时,由于新 鲜充量中含有燃料,利用新鲜充量进行扫气将导致燃料的损失以及未燃碳氢 排放物的增加,因此,这类内燃机的气门叠开角一般都是比较小的。 在中,其进气管内压力始终接近大气压力,因此可以允许采 用较大的气门叠开角,增强扫气效果,以达到提高内燃机在常用转速范围内 充量质量的目的。统计显示,一般非增压柴油机的气门叠开角在20-50(CA) 范围内。 对于而言: 1、增压柴油机进气管内的压力在气门叠开期内总是高于排气管内的压力, 因此总有一定数量的新鲜无量在正向压力差的作用下由进气管通过燃烧 室后流入排气管中,以达到扫除燃烧室内残余气体的目的。
12、 2、增压柴油机的热负荷较非增压柴油机严重,适当的扫气冷却既有助于降 低受热零件(如排气门)表面的温度提高其可靠性,还可以降低增压 器涡轮的进口温度。 正因为燃烧室扫气有如此有利的作用,增压柴油机都采用比非增压柴油机 大的气门叠开角,一般为80-140(CA); u 换气损失是实际循环所不可避免的损失,换气损失定义为理论循环换气功 与实际循环换气功之差。 u 对于不同类型的发动机而言,换气损失是不同的。图42是四冲程内燃机 在非增压与增压条件下的换气损失示意图。 u 在非增压内燃机中,理论循环的换气过程(图42a)是排气行程线与进气行 程线重合,换气功为零;而在实际循环中,从排气门开启直到进气
13、门关闭, 发动机消耗在换气上的功(其值为负)如阴影面积所示(图42b),它代表了 有效功在换气过程中的损失。 u 对于增压内燃机而言,理论的换气过程(图42c)是经过压缩的新鲜充量 以增压压力pb等压地流人气缸,而排气则以pT等压地排出,进气与排气压 力值均高于大气压力,且pbpT。这样,换气过程所获得的功(其值为正) 为图中的矩形面积所示;而实际的换气过程中(图42d),换气过程所获 得的功却是图中的封闭曲线面积,小于理论循环值,两者之差就是换气损 失,其大小可由图42d中的阴影面积来表示。 u 由于换气过程主要是由进气过程和排气过程所组成,因而其损失也是由进 气损失和排气损失两部分组成。
14、从排气门提前开启,直到吸气行程开始、气缸内压力达到或接近 进气管压力之前,在此阶段所损失的功称为排气损失。 它又可以分为两部分,即膨胀损失和推出损失,在图4-2b和图4- 2d上分别以面积w和x来表示,前者是有效膨胀功的减少,后者是把排气 推出所消耗的功。 (1)随着排气提前角的增大,膨胀损失增加,而推出损失功减小,这可以从 图43所示的一台增压内燃机的示例中可以清楚地看出。因此,最有利 的排气提前角,应当是使两者损失之和为最小。 (2)下图b表示, 发动机转速对排气损失影响也较大。一般转速增高时,发 动机膨胀损失功减少的幅度远远小于推出损失功增加的幅度,两者之和 随转速增加,呈现增加的趋势。
15、 一排气损失 降低排气损失的主要方法:合理确定排气提前角;采用双排气门,可以有 效地减少排气过程中的损失。 n 与排气过程不同的是,进气损失不仅体观在 ,更重要的是体现在进气过程中, 因为前者对于内燃机的影响不大,而后者对 有显著的影响。 n 如图42b和图42d所示,由于进气道、进气门等处存在流动 阻力损失,进气压力线位于大气压力线p0(非增压机)或增压压 力线p b(增压机)之下,两者之差围成的阴影部分面积可分别用 y表示。将它与排气过程中的损失相比,其值明显相对较小(图 44)。 n 合理调整配气定时,加大进气门的流通截面、正确设计进气管 及进气道的流动路径以及降低活塞平均速度等,都会使
16、进气损 失减少。 二进气损失 换气损失由进气损失与排气损失所组成,对应图42中面积、y 与x之和。从实际循环示功图的分析中可以发现,面积以及掺杂 在面积x和y中的一小部分u(图中以交叉线表示)所表示的功损失, 已经在求取平均有效压力时包括进去,故将换气损失中剩余的由面 积x+y-u所表示的功损失,定义为。 在中,泵气损失是由pV图中换气过程封闭曲线面积 所代表的负功来表示的,如以WP表示泵气损失,则有: 式中,L p为示功图的比例系数。 pp LuyxW)( 3 3泵气功与泵气损失 ,由于进气压力高于大气压力,所以pV图下换气 过程的封闭面积并非泵气损失,而是有用功,它将对内燃机的效率 产生正
17、面的影响。增压内燃机的泵气损失越小,则这块面积就越大。 因此,所获泵气功: 一般用平均泵气压力pb来表示泵气损失的大小,其定义为 ()() pwbTsp Wpp Vxyu L s p p V W p 所有减少换气损失的措施以及以后要讨论到的提高充量系数的途径, 对降低泵气损失都是有利的。 二冲程内燃机没有单独的进排气活塞行程,所以泵气功为零。 一、四冲程内燃机的充量系数 衡量内燃机充气性能的一个重要指标是, 其定义为:内燃机每循环实际进入气缸的新鲜充量m1与以 进气管内状态充满气缸的工作容积的理论充量msh之比 这里所指的,是指进人气缸前气体的热力 学状态,如温度与压力等。由于充量系数对于评价
18、进气 系统如此重要首先应导出充量系数的理论分析式,以 便用来分析提高充量系数的各种措施。 废气残余系数(r) :进气终了时缸内残余废气占实 际进入气缸内的新鲜空气量的百分比。 进气门关闭时缸内气体的总质量为: rla mmm 式中: pa、Ta指进气终了时,缸内充量的压力和温度。 ps、Ts发动机进气管状态下气体的压力和温度。 (1)非增压发动机,为内燃机所处环境条件下的大气压力和温 度; (2)增压发动机,为增压器中冷器后的新鲜充量的压力和温度。 根据充量系数的定义: ss aar sh ar sh l c V V m m m m )1 ()1 ( 提高充量系数的措施: 1. 降低进气系统的
19、阻力损失,提高气缸内进 气终了时的压力。(最为重要的影响因素) 2. 降低排气系统的阻力损失,以减小气缸内 的残余废气系数。 3. 减少高温零件在进气系统中对新鲜充量的 加热,以降低进气终了时的充量温度。 aass aar sh ar sh l c TRV Vp m m m m )1 ()1 ( c c影响因素 r: r = c,残余废气占据体积,实际进气 量相对减小; Ta:Ta= c,缸内密度减小,实际进气量减小; Pa:Pa= c,缸内密度增加,实际进气量增加; c : c = c,在气缸总容积不变的情况下,工 作容积相对增加,理想进气量增加; Ts:Ts= c,进气管密度降低,相对温差
20、减小, 相对密度差减小,理想进气量减小; Ps:Ps= c,进气管密度增加,理想进气量增加; 实际上, c 、Ts、Ps不能根据c的要求而改变。但 是,增压后Ts会提高; 而r r 、 Pa、 Ta是重要的影响因素。 从分析式不难看出,在发动机的结构参数(如压缩比c)确定的前提 下充量系数的措施可以归结为以下几点: 1)降低进气系统的阻力损失,提高气缸内进气终了时的 2)降低排气系统的阻力损失,以减小缸内的 r 3)减少高温零件在进气系统中对新鲜充量的加热,以降低进气终了时 的 a 4)合理选择配气定时和气门升程规律,在减小mr的同时,增加m1,减 小 r 二、提高充量系数的措施 研究表明,在
21、上述影响因素中,。换言之, 降低进气过程的流动阻力损失、提高进气终了压力,是提高充量系降低进气过程的流动阻力损失、提高进气终了压力,是提高充量系 数最有效的措施数最有效的措施,故重点讨论。 提高充量系数的措施提高充量系数的措施 ( (一一) )降低进气系统的流动阻力降低进气系统的流动阻力 ( (二二) )采用可变配气系统技术采用可变配气系统技术 ( (三三) )合理利用进气谐振合理利用进气谐振 ( (四四) )降低排气系统的阻力降低排气系统的阻力 ( (五五) )减小对进气充量的加热减小对进气充量的加热 进气系统的流动阻力,按其性质可分为两类: o 一类是,实际上是管道牵擦阻力,与管长和管内流
22、动面上的表 面质量有关; o 另一类是,它是由于流通截面大小、形状以及流动方向变化, 在局部产生涡流损失所引起的。 ( (一一) )降低进气系统的流动阻力降低进气系统的流动阻力 o 在内燃机进气流动中,由于管道较短,壁面比较光滑、其 ; ,它由一系列的局部阻力叠加而成,尤 其在进气门座处、空气滤清器和流道转弯处,流动损失更为明显, 降低局部阻力损失,对降低进气系统的流动阻力,提高充量系数有显著 的意义。 降低进气系统的流动降低进气系统的流动阻力阻力的措施的措施 u1 1降低进气门处的流动损失降低进气门处的流动损失 u2 2采用可变进气系统技术采用可变进气系统技术 进气门座处的流通截面,是进气流
23、道中截面最小、流速最 高的地方,因而该处的局部阻力最大该阻力除了与阻力系 数有关外,还与该处的流动速度vs的平方成正比。即 这样,降低进气门处的流动损失,可以从降低气门座处的 流速和改善气门座处的流动情况以提高流量系数入手解决。 2 sss vp 1、降低进气门处的流动损失 o 过高的气体流速,还会发生气体阻塞现象。空气动力学理论指出,在高 速可压缩流动系统中,马赫数是决定气流流动性质的最重要参数。因进 气门座处的真实流速是一个随时间变化的参数,为方便起见,用平均速 度代替。考察气门座处的流动情况,并定义平均进气马赫数Ma,并结合 流量方程,可得 o 式中,vs为进气门座处气流的平均速度;cs
24、为进气门流通截面处的气体 声速;sm为进气门在开启期间的平均流量系数,其求法是:以气门盘 面积为参考面积,通过稳流吸风试验测得在不同曲轴转角(即不同升 程)下的流量系数,求出其平均值 22 2 /4/4 () s smsmp s smsm m s ssm fC F dCD VD d )/( IVOIVCs IVO IVC sm d 2 s m a sssms VD M cdc 进气平均马赫数Ma综 合了进气门大小、形 状、升程规律以及活 塞速度等因素,并且 其大小与发动机的转 速成正比。研究发现, (图 45)。这一结论,对 于设计和评价气门机 构是很有用的。 减小进气门流通截面处流动损失的具
25、体措施减小进气门流通截面处流动损失的具体措施 由于进气过程的重要性,一般应尽可能布置较大尺寸的进气门,以降低流 经进气门截面时的气体流速,从而降低局部流动阻力。在现代高速内燃机2 气门结构中,进气门直径d与缸径D的比值可达45%50%。面积比为0.20.25, 这样排气门不得不缩小,但过小的排气门又会导致排气阻力的增大。因此, 通过加大进气门直径的方式来提高充量系数,是受到限制的。 增加进气门数,可以取得与加大进气门直径同样的效果,即增大了进气门 的有效流通截面积。高速柴油机以往仅在缸径大于120mm时才考虑采用两进 (进气门)、两排(排气门)即4气门的可能性;现在对于D=8090mm的柴油
26、机,也认为采用4气门利大于弊。 除了换气损失小、充量系数高以外,喷油器的垂直中置对混合气形改极为有 利。 4气门柴油机对具有进气中冷的高增压系统也非常合适 对于汽油机来说其效果也是相当好的(表41)。 采用两进、两排的气门结构后,进气门面积之和可以达到气缸面积的 30%,几乎比2气门提高30%50%。表4l列出了采用双顶置凸轮轴 (DOHC,Double Overhead Camshaft)4气门发动机的优、缺点,总的结 论是优点大于缺点。 近年来,几乎所有强化程度高的车用发动机均采用了这一技术,发动机 转速可达6000rmin或更高,平均有效压力达1.0MPa以上。最小的4气 门发动机,其缸
27、径仅为80mm。 图46是一个2L 排量的4气门发动 机与同排量2气门 发动机的性能比 较,显然,采用 顶置凸轮轴4气门 技术,可以便发动 机的功率提高约 15%30%,转矩 增大约5%10%。 经济性能也得到 改善。 对于D80mm的点燃式内燃机, 若采用两进、两排的4气门结构 在气缸盖缸中间部位往往难以布 置即便是最小尺寸的火花塞,这 时只好适当缩小进气门直径。若 采用三进二排的气门结构,既能 充分利用气缸外围尺寸,又能利 用气缸中心布置火花塞。 右图是采用5气门(三个进气门,两 个排气门)的发动机与4气门发动 机的比较情况,可见其高速性能 进一步改善。对于排量较小(1.5L 以下)的4缸
28、小型轿车用汽油机来 说,也有采用进、二排的3气 门结构,这样既能发挥多气门的 优越性,结构又相对简单。 l 改善进气门座、进气道以及气门头部的结构,也有助于降低局部阻力, 提高气门流通截面的流量系数。一般在高速内燃机中,均利用气道使 进气在其中发生弯曲和旋转,以便在气缸中形成定向的空气运动,以 利于燃烧的进行。但这势必影响气门的流量系数,增大流动损失,因 此,在设计及制造中,应尽可能保证气道内壁面的过渡圆滑、平稳, 避免气流急转弯现象。在进气门头部以及气门座面处设计合理的形状, 对改善气流的流动阻力也有十分显著的效果。 从获得最大充量系数的角度出发,比较理想的配气系统应当要满足以下 要求: 1
29、)低速时,采用较小的气门叠开角以及较小的气门升程,防止出现缸内新 鲜充量向进气系统的倒流,以便增加转矩,提高燃油经济性。 2)高速时应具有最大的气门升程和进气门迟闭角,以最大限度地减小流动 阻力,充分利用过后充气,提高充量系数,以满足动力性要求。 3)配合以上变化,进气门从开启到关闭的进气持续角也进行相应调整, 以实现最佳正时,将泵气损失降到最低。 (二)采用可变配气系统技术(二)采用可变配气系统技术 理想的气门定时应当是根据发动机的工作情况及时作出调整,应具有 一定程度的灵活性。显然,对于传统的凸轮挺杆气门机构,由于在工 作中无法作出相应的调控,也就难于达到上述要求,因而限制了发动 机性能的
30、进一步提高。 完全满足上述各项要求的机构是相当复杂的,目前还仅 仅处于研究阶段如(GM汽车公司推出的 以及Ford汽车公司的。由于制 造成本和可靠性等原因,若将这种全电控的技术应用于实 际发动机中气门要时间。 目前较为常见的商品化系统可以分成两大类,即 (VCS,Variable Camshaft System)和 (VVT,Variable Valve Timing )。除此之外,也有可变气 门升程、可变气门作用角等其他形式,其原理基本相近, 只是实现方式不同而已。 无凸轮轴气门驱动(camshaftless valve actuation)就是取消发动机传 统气门机构中的凸轮轴及其从动件,
31、而以电磁、电液、电气或其他方 式驱动气门。电磁气门驱动(electromagnetic valve actuation)是利 用电磁铁产生的电磁力驱动气门。 基本原理 电磁气门驱动机构主要由两个相同的电磁铁( 共用一个衔 铁)、两个相同的弹簧和气门组成。 发动机不工作时,激磁线圈1和线圈2 均不通电,气门半开半 闭;发动机启动时,气门驱动装置初始化,控制系统根据曲轴转 角判定气门在这一时刻应有的开、关状态,使线圈1 或线圈2 通 电,电磁力克服弹簧力,将气门关闭或开启。气门处于开启状态 时,线圈1 不通电,线圈2 则必须通电,使电磁力等于或大于弹 簧力以保持气门开启。要关闭气门时,线圈2断电,
32、衔铁和气门 在弹簧力的作用下向上运动;在气门接近关闭位置时,线圈1 通 电,电磁力帮助气门(衔铁)快速运动至关闭位置;此后线圈1 继续通电,使气门保持在关闭状态。需要开启时,线圈1断电, 衔铁和气门在弹簧力作用下向下运动。如此循环往复。 可变凸轮机构技术一般都是通过两套凸轮或摇臂来实现的, 即在高速时采用高速凸轮,其升程与作用角都较大;而在 低速时切换到低速凸轮,升程与作用角均较小,如图48a 所示。图48b是采用可变凸轮机构后,发动机的性能与传 统配气机构的性能比较,显然低速转矩和高速动力性能都 得到了改善。 1、可变凸轮机构VCS 相对于可变凸轮机构,可变气门定时技术的应用较多一些:对于D
33、OHC系 统而言,由于进、排气门是分别通过两根凸轮轴单独驱动的,可以通过 一套特殊的机构将进气凸轮轴按要求转过一定的角度,从而达到改变进 气相位的目的。 根据实现机构的不向,这种改变又可以分成分级可变与连续可变分级可变与连续可变两类, 调节范围最高可达60(CA)。由于技术上相对成熟,很多高性能的汽油发 动机均采用了这一技术。从图49可以看出采用VVT技术可以使得发功机 的低速转矩性能得到大幅度的改善。某3L排量的6缸车用发动机上运用这 一技术,油耗最大降低了4.5%,HC及NO2排放下降幅度分别达到10%和4%。 2、可变气门定时VVT (三)合理利用进气谐振(三)合理利用进气谐振 在进气过
34、程中,活塞的下行运动可导致进气管内产生膨胀波,该膨胀波 将在进气管的开口端反射,然后产生正向压力波向气缸传播:在合适的条 件下(如转速、出气管长度等),这个正向压力波可以使得进气过程结束时, 进气门处的压力高于正常的运气压力这样发动机就可以多进气,从而使 充量系数得到提高,即是图中充量系数峰值所在。 o 为了追求最佳的充量系数值,可以采用,以充分利用进气 谐振的效果,达到高速与低速性能的最优化。比较常见的可变进气系统 是通过改变进气管长度或流通截面的方式来实现,如图411所示。在低 速时控制阀保持关闭状态,气体从主气道流入发动机中;而高速时控制 阀打开,气体从主、副两个气道同时流入气缸中。控制
35、阀关闭时,相当 于进气管流通截面减小,相应提高了低速充量系数(图411b)。 a 进气系统结构进气系统结构 b 外特性外特性 u 降低排气系统阻力,可以使气缸内的残余废气压力下降,这样不仅可以减 少残余废气系数,有利于提高充量系数,而且可以减少泵气损失,提高指 示效率。:。 u 与进气系统一样,排气流通截面最小处是排气门座处,此处的流速最高、 压降最大,故在设计时应保证气门及其座面的良好结构。排气道应当是渐 扩型,以保证排出气体的充分膨胀,从而降低气缸与排气管内的压力差, 使得气缸内的废气压力得以迅速下降,达到提高充量系数和降低泵气损失 的目的。 u 与进气管一样,排气管也存在调谐现象,只不过
36、所希望的调谐效果是使得 排气门处压力降低,以利于排气。为此,需要通过大量的理论计算以及试 验,确定合理的排气管长度,对于高速二冲程内燃机,这一点尤其重要。 u 良好的歧管流型与结构也有助于降低整个流动阻力,特别是对于高速多缸 发动机,为避免排气压力波的互相干涉,用多枝型排气管或多排气管结构 来替代单排气管,可以获得的低速转矩与充量系数值。 u 在排气管中往往还有消声器和排气后处理器(催化转化器),设计时应该 保证足够的消声与降污效果的前提下,尽可能降低流动阻力。 ( (四四) )降低排气系统的流动阻力降低排气系统的流动阻力 在进气的过程中,进入气缸的新鲜充量将会被各种高温表面所加热 而温度升高
37、。从而导致进气密度下降,充量系数减小,还可能促使发 功机整体热负荷提高和不正常燃烧的发生。进气温升受到各种结构与 运行参数的影响,如进气管结构、发动机转速、负荷、冷却水温度。 ( (五五) )减少对进气充量的加热减少对进气充量的加热 o 对于来说,由于需要进气加热来保证部分液态燃料 在进气管中的蒸发。所以进气管与排气管布置在同一侧。 o 对于,均采用进、排气管两侧布置 的方案,以提高充量系数。 o 对于,有时也采用进气冷却技术,以降低进气温度。 则将进气中冷技术作为进一步提高增压压力、降低热负 荷的重要途径之一。 补充补充 o 内燃机所能发出的最大功率受到气缸内所能燃烧的燃料的限内燃机所能发出
38、的最大功率受到气缸内所能燃烧的燃料的限 制,而燃料量又受到每个循环内气缸所能吸人空气量的限制。制,而燃料量又受到每个循环内气缸所能吸人空气量的限制。 如果空气能在进入气缸前得到压缩而使其密度增大、则同样如果空气能在进入气缸前得到压缩而使其密度增大、则同样 的气缸工作容积可以容纳更多的新鲜充量,从而就可以多供的气缸工作容积可以容纳更多的新鲜充量,从而就可以多供 给燃料,得到更大的输出功率。这就是给燃料,得到更大的输出功率。这就是增压的基本目的增压的基本目的。 o 增压是强化内燃机最有效的手段,是现代柴油机以及高性能增压是强化内燃机最有效的手段,是现代柴油机以及高性能 汽油机的基本特征汽油机的基本
39、特征 o 内燃机的增压问题,涉及到增压器本身、增压器与内燃机的内燃机的增压问题,涉及到增压器本身、增压器与内燃机的 匹配以及内燃机为适应增压需要而进行的必要调整等内容,匹配以及内燃机为适应增压需要而进行的必要调整等内容, o 增压技术萌生于19世纪,在20世纪初期得到初步应用。 随着材料科学及制造技术的进步,柴油机的涡轮增压技 木在20世纪中叶开始走向大规模商业应用、并逐步推广 到汽油机中。目前,大功率柴油机的绝大部分、车用柴 油机的半数以上以及相当比例的高性能汽油机,均采用 了增压技术。 o 一般而言,增压后的功率可比原机提高40%60%甚至更多。 发动机的平均有效压力可达到3MPa。事实上
40、,增压已经 成为发动机强化的一个十分重要而有效的技术手段。 一、增压技术概述 n T p KP s s m a it cL 1 1 内燃机的增压方式 根据方式的不同,内燃机增压可以分成四种类型: (1)机械增压 发动机输出轴直接驱动机械增压器,实现对进 气的压缩。这种方式提出最早,但其优点与缺点同样突出。 (2)排气涡轮增压 压气机与涡轮同轴相连,构成涡轮增压器。 涡轮在排气能量的推动下旋转,带动压气机工作,实现进气 增压。 (3)气波增压 利用进气及排气系统中的波动效应来压缩进气, 著名的气波增压器(Comprex)就是其中之一。 (4)复合增压 由上述各种方式组合而成,如机械增压与涡轮 增
41、压的结合等。 从实际应用的情况来看,较为常见的是涡轮增压和机械增 压,其中涡轮增压占了绝大部分,而机械增压则在近年来重 新得到重视,发展较快。 从第二章中可知,内燃机的动力性指标(以有效功率Pe为代表)与经济性指标 (以有效燃油消耗率be为代表)可以表示为 nP smc a it e mit e b 1 增压对经济性及动力性能的影响 发动机增压技术的优势与代价 优势优势 1)增压器的质量与尺寸都较小,内燃机的总体质量增加不大,而输出功率可 以以得到大幅度的提高,整机的比质量减小、升功率相应增大。采用增 压技术可降低内燃机单位功率的造价,提高材料的利用率。对于大型柴 油机而言,经济效益更加突出。
42、 2)由于与非增压内燃机相比,排气可以在涡轮中获得进一步的膨胀,的排 气噪声有所降低。 3)增压后,有利于内燃机在高原稀薄空气条件下恢复功率,以达到或接近平 原性能。 4)增压后,由于压缩终点温度与压力提高,滞燃期缩短,压力升高比有所降 低。燃烧柔和,燃烧噪声有所降低。 5)过量空气系数较大,HC、CO和烟度排放降低 6 )技术适用性广,从低速到高速、二冲程到四冲程、大缸径到小缸 径都有应用 代价代价 1)增压后缸内工作压力以及温度提高,机械负荷及热负荷加大,内燃机的可 靠性受到严峻的考验。 2)低速时由于排气能量不足,可能会使发动机的低速转矩受到影响以及车用 发动机十分不利。 3)由于在涡轮
43、增压器中,从排气能量的传递到进气压力的建立需要内燃机的 加速响应性能较非增压机型差。 4)增压发动机性能的进一步优化受到增压器及中冷器的限制,其中增压器 的问题集中在材料、耐热性能、润滑、效率等方面,而中冷器则要求体积 小、效率高、质量轻。 涡轮增压器由压气机和涡轮两 大部分组成。根据排气在涡 轮中流动方向的不同,排气 涡轮增压器可以分为两大类, 即径流式涡轮增压器和轴流 式涡轮增压器。一般大型柴 油机多采用轴流式,以满足 大流量、高效率的要求;而 车用发动机多采用径流式, 以适应高转速及较高响应性 能的要求。增压器的压气机 部分,一般都采用单级离心 式结构。右图是一个径流式 祸轮增压器的示意
44、图。 二、涡轮增压器的工作特性 10ZJ型涡轮增压器(型涡轮增压器( 离心式压气机的功用是提高气体的压力,它主要由进气道、工作轮(含手 风轮)、扩压器和出气蜗壳等部件组成(图414)。首先,新鲜充量沿截面收 缩的轴向进气道进人工作轮气流略有加速(图414b中的位置1)。然后,气 流进人工作轮上叶片组成的气流通道。由于工作轮的转速很高(一般为每分钟 几万转有时高达每分钟几十万转),离心力的作用使得新鲜充量得到了很大 的压缩,其压力、温度以及气流速度均有较大程度的增加(图中位置2),这部 分能量是由驱动工作轮的机械功转化而来,而机械功又是来源于与之间轴铀 相连的涡轮。 然后,压力提高了的气体沿工作
45、轮径向流出,进人扩压器和出气蜗壳。由 于两者均是截面逐渐增大的通道,气体所拥有动能的大部分会在其中转 变为压力能、这样,压力得以进一步升高而气流速度则相应下降(图 中位置3、4):同时,出气蜗壳还兼有收集流出的气体以便向内燃机进 气管输送的目的。 由此可见,新鲜充量在压气机中完成了一系列的功能转换,并将涡轮机传 给压气工作轮的机械能,尽可能多地转变为充量的压力能。 增压比增压比 1)( 1 01 02 0102 01 0102 0102 0102 0102 k k ss b p p TT T TT TT hh hh 实际压缩功 等墒压缩功 11喷嘴环喷嘴环 22导向叶片导向叶片 33工作叶片工
46、作叶片 44工作轮工作轮 径流式涡轮机的组成径流式涡轮机的组成 传统增压技术的不足: 涡轮流通截面固定的涡轮增压器与发动机难以在发动机整个工作范围内 保持合理匹配,特别是在增压度较高时,增压匹配不能兼顾发动机的高 速和低速性能:在发动机低速运转时,由于废气提供的能量很少,涡轮 增压器的转速太低,难以提供适合的增压压力和充足的进气量,也就难 于产生较大的转矩;发动机在高速运转时,由于排气温度和压力很高, 可能会造成增压器超速。 由于增压器与发动机属于纯气动连接而非机械连接,致使增压器响应滞 后,使得在过渡过程中进气量供给的响应比油量供给的响应慢,并因此 而导致发动机的瞬态响应性能差和加速冒烟。
47、解决方案: 采用可变几何涡轮增压器(VGT) (最有效) 安装废气放气阀 VGT的分类 可变喉口增压器 工作原理: 如图1所示,是将一个可变喉口装置置于发动机排 气管出口与涡轮入口之间,改变喉口的开度,即可 获得不同工况下所需的不同流通截面,达到改善发 动机与增压器匹配性能的目的 优缺点: 可变喉口增压器结构简单,成本低廉,但效率较 低 舌形变截面结构 工作原理: 在涡轮进气截面后加一 舌形可调喷嘴叶片,通过 舌形叶片的摆动,改变蜗 壳的面径比AR值,使得 发动机低速时AR减小, 提高涡轮转速,增加增压 压力;高速时,有较大的AR值 舌形挡板结构分单舌形和双舌形两种 优缺点: 舌形挡板VGT结
48、构简单,调节方便,易实现自动控 制,但由于流动损失较大,调节范围有一定限制, 增压器总效率低 可变喷嘴环增压器(VNT) 工作原理: 采用的是活动的喷嘴环叶片,喷嘴环叶片可以 绕着各自的轴心共同旋转,随着喷嘴环叶片角度 的改变,涡轮机最小流通截面积以及排气进人涡 轮的角度和速度都将发生变化,从而改变了涡轮 机的转速和压气机出口端的增压压力结构如图2 所示。 发动机低速运转时,喷嘴环截面积减小,涡轮 速度上升,增压压力增加,保证了低转速时的 增压压力和进气量;发动机高速运转时,喷嘴环截面积增大,涡轮 转速下降,防止增压器超速发动机加速时,为了提高增压器的响 应速度,可减小喷嘴环截面积,提高增压器
49、转速,从而提高增压压 力和进气量,满足瞬态工作时的进气要求 优缺点: VNT与可变喉口、舌形挡板增压器相比,调节范围广,在低速时增 压器的总效率最高。 l l 1 1压缩比与过量空气系数压缩比与过量空气系数 为了降低爆发压力,增压内燃机应适当降低压缩比。增压比越高,压 缩比降低幅度越大,但过高的降幅会恶化内燃机的经济性能,而且会引 起冷起动困难。对于汽油机而言增压更容易诱发爆燃,故降低压缩比更 是比较普通的选择; 为了降低内燃机的热负荷和改善经济性。增压内燃机可适当加大过量空气 系数,如车用柴油机的a 一般较小,增压后一般将其增大10%30%。 六、内燃机的增压改造 为了适应增压的要求,内燃机
50、的结构与工作参数要进行适当的改动。 2 2供油系统供油系统 为厂适应增压后功率增大的要求,需要增加每循环的供油量。对于增压柴油机 而言,为了使供油持续期近似不变,常采用以下方法:增大柱塞直径、增 加供油速率、提高喷油比力、加大喷孔直径等,这些措施也可保证燃油喷 注在空气密度提高的情况下有足够的贯穿距离。同时,适当地减小喷油提 前角,可以限制最高爆发压力的增长。 化油器式汽油机在增压后也需要对量孔、供袖泵、点火角调整装置等处进行 调整。 3 3配气系统配气系统 利用增压压力比排气压力高的有利条件,应合理地加大配气系统的 气门叠开角。以增加气缸扫气,从而降低内燃机的热负荷。增压柴油机 的试验表明,
51、气门叠开角每增加10(CA)活塞平均温度降低4(CA)。 合理增大气门叠开角,除了降低发动机的热负荷以外,还由于气缸内废 气扫除彻底和进气终点温度的降低,使充量系数增大。此外,由于降低 了排气温度,涡轮的工作条件也在一定程度上得到了改善;但当增压压 力较高(如pb300kPa)和采用进气中冷技术后,气门叠开角反而和非增 压相差不多,主要是为了防止低负荷时的排气倒流以及过大的活塞顶上 的避让坑。 4 4、进排气系统、进排气系统 进排气系统的设计,要与增压系统的要求相一致。如脉冲系统,为了 使排气期间各缸的排气不致于互相干扰,要求同一排气支管所连各缸内的 排气不能重叠或尽可能地减小重叠。如发火次序
52、为1-5-3-6-2-4的六缸机, 可以采用1、2、3缸和4、5、6缸各连一根排气管,每一根管内相邻两缸间 的工作夹角为240(CA),与排气脉冲波的持续时间大致相同,排气间 干扰不大。 增压内燃机的进气管容积希望尽可能大一些,以减少进气压力的脉动, 从而提高压气机效率和改善发动机的性能。 5 5、增压空气的冷却、增压空气的冷却 将增压器出口空气进行冷却,一方面可以进一步提高内燃机进气管内 空气的密度,从而提高内燃机的功率输出;另一方面可以降低内燃 机压缩始点的温度和整个循环的平均温度,从而降低内燃机的排气 温度、热负荷以及NOx排放。为达到这一目的,一般利用中冷器, 用循环冷却水或冷却风扇气
53、流对增压后的充量进行间接冷却。利用 冷却风扇或车辆运行过程中所产生的高速气体流动来冷却增压空气 的“空空”中冷方式,可以获得比较好的冷却效果,且布置较为 灵活,近年来在车用发动机上应用较多。 1进气控制伺服机构进气控制伺服机构 2进气控制阀进气控制阀 3发动机控制装置发动机控制装置 1、12-节气门节气门 2-喷油器喷油器 3-进气管进气管 4-控制阀控制阀 5-大容量空气室大容量空气室 6-空气滤清器空气滤清器 7-进气增压控制阀进气增压控制阀 8-真空执行器真空执行器 9电磁真空通道阀电磁真空通道阀 10-ECU 11-真空缸真空缸 l 从排气能量利用的观点看,汽油机的涡轮增压与柴油机相比
54、并没有本 质的区别,但长期以来,涡轮增压技术除了在赛车发动机和高性能轿车 发动机中得到应用外,在其他应用领域,其普及性远不如柴油机。究其 原因,是由于两种发动机在工作过程中的不同特点所决定的。限制汽油 机增压的主要技术障碍是爆燃、混合气的控制、热负荷和增压器的特殊 要求等方面,现分述如下。 七、汽油机的增压技术 1、爆燃、爆燃 汽油机增压后,由于混合气压缩始点的压力,温度增高,以及燃烧 室受热零件热负荷提高等原因,将使促爆燃的发生。为此,必须采用降 低压缩比、推迟点火时刻、采用进气中冷等技术措施,但相应会带来热 效率下降、排温过高、成本增加等不利影响。正因为如此,汽油机的增 压比一般比柴油机低
55、得多,一般不超过2,这样,功率最高增加幅度约 为40%50%,而燃油经济性则不一定有所改善。 汽油机采用定质变量调节,化油器式发动机进行增压时,气体流经化油 器喉口的压力是变化的,不仅难于精确供应一定浓度的混合气,还增加了 一些如增压方案的选挥、化油器的密封、加速响应性能等新问题。电控汽 油喷射技术的应用,为增压技术在汽油机中的应用扫除了大障碍。 2混合气的调节混合气的调节 汽油机的过量空气系数小,燃烧温度高,膨胀比小,排气温度也比 柴油机高200300。增压后,汽油机的整体温度水平提高,热负荷问 题加重。同时,为避免可燃混合气的损失,一般气门叠开角不大,燃烧 室的扫气作用不明显,因此,增压汽
56、油机的排气门、活塞、涡轮等处的 热负荷均比增压柴油机严重。 为此,汽油机在进行涡轮增压时,一般都采用涡轮前放气涡轮前放气的调节方 案,以抑制发动机高速、高负荷时增压压力的过度增长,这不仅是限制 最高燃烧压力的需要,也是抑制爆燃、降低热负荷的需要 3、热负荷、热负荷 汽油机增压比低、流量范围广、热负荷高、最高转速高且转速变化范 围大。这就要求增压器体积要小、耐高温性能要好、转动惯量要小,同时 效率还要保证在一定的范围内,还要求有增压调节装置。因此,要求是很 苛刻的,这就造成它的成本比柴油机用增压器要高。实际上,汽油机增压 技术的应用与进步,很大程度上取决于高性能涡轮增压器的发展情况。在 这方面,
57、已经有较多的适合于汽油机增压的涡轮增压器产品可供选择,除 此之外,有些新技术还在进一步的发展中,如陶瓷涡轮转子、可变截面涡 轮增压器等。 4对增压器的特殊要求对增压器的特殊要求 总体而言,汽油机的增压技术在过去的20年中获得了重大的突破,各 种装备增压汽车油机的高性能轿车陆续推出。统计数据显示,1990年 全世界的增压汽油机已经占到了汽油机总量的15%。随着电子控制技 术以及发动机管理系统的大规模应用,以及高性能增压器的不断出现, 汽油机增压技术的发展将有一个新的局面。 与涡轮增压发动机相比,机械增压发动机历史较为悠久,且在低速时 具有较好的转矩特性和加速响应性能,但由于高速时的增压器噪声和
58、使用寿命问题,影响了它在发动机上的实际使用。近年来,机械增压 重新得到了重视与发展,这是因为: 1)制造工艺水平和材料科学的进步,使现代机械增压器的体积 与噪声大幅度降低,效率和使用寿命有很大的提高。 2)小排量发动机(如小于2L)采用涡轮增压难度很大,特别是 难于找到合适的涡轮增压器,而采用机械增压,则可以获得比涡轮增 压更好的动力、转矩甚至经济性能。 3)对于排气管中安装有催化转化器或微粒捕集器等后处理装置 的发动机,机械增压系统对排气系统不作任何改动,故比涡轮增压系 统优越,更有利于有害排放物的消除。 机械增压器的类型有很多,主要有螺杆式、蜗旋式、旋转活塞 式和刮片式等。其中,前两种具有
59、体积小、机械损失小、噪声小等优 点,应用较多。 六、机械增压 二冲程内燃机与四冲程内燃机同样具有进气、压缩、燃烧、膨胀 和排气过程,不同的是这些过程只用两个活塞行程来完成,其中差别 最大的是换气过程:该过程的工作顺字是:在膨胀行程的末期,活塞 下行首先打开排气口,开始排气,而后扫气口开启,具有一定压力 的新鲜充量由扫气口流人气缸,并强迫废气由排气口流出,进行充量 更换,然后,活塞到达下止点后又上行,依次将扫气口和排气口关闭, 换气过程结束。新鲜充量由扫气泵提供,力气泵的作用是对新鲜无量 进行压缩,使其压力提高后,再进入气缸。通常把二冲程内燃机的换 气过程分为三个阶段,即自由排气阶段、排气与强制
60、排气阶段以及过 后排气或过后充气阶段。 一、二冲程内燃机的换气过程 从排气口开启直到新鲜充量进入气缸为止,称为自由排气阶段。排气口 一般在下止点前6075(CA)开启,排气口刚开启时,气缸内压力 较高,约为300600kPa,压力比pb/pr超过临界值,气缸内的燃气 以声速流出。在该阶段,排气流量与排气管内的气体状态无关只 取决于缸内气体的状态和排气口流通截面的大小。在自由排气阶段, 缸内燃气可以流出大约70%80%,所以它是二冲程内燃机换气过程 的一个重要阶段。 1. 1. 自由排气阶段自由排气阶段 当气缸压力下降到稍低于扫气压力ps时,扫气口开启,新鲜无量进入 气缸,直到活塞下行到下止点后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 礼仪用品行业产品线规划考核试卷
- 续签劳动合同案例分析
- 汽车配件客户服务礼仪培训考核试卷
- 电气设备在智能电网能源优化调度系统中的应用考核试卷
- 玻璃容器生产过程中的废料处理与回收考核试卷
- 水利工程中的雨水利用和洪水防治技术考核试卷
- 大班防拐骗安全教育教案
- 稀有金属加工质量改进方法创新与实施案例分析考核试卷
- 机场航站楼建筑节能技术与策略考核试卷
- 汽轮机在核能发电领域的优势分析考核试卷
- 母乳喂养知识培训课件下载
- 西安市曲江第三中学行政人员及教师招聘笔试真题2024
- 2025-2030中国竹纤维行业市场发展现状及竞争策略与投资前景研究报告
- 委托外包催收合同协议
- 2025-2030中国涂装行业市场深度分析及发展预测与投资策略研究报告
- 乳腺癌诊治指南与规范(2025年版)解读
- 银行系统招聘考试(经济、金融、会计)模拟试卷14
- 心理韧性在咨询中的重要性试题及答案
- 外研版(三起)(2024)三年级下册英语Unit 2 单元测试卷(含答案)
- 2025年全国普通话水平测试训练题库及答案
- 2025年山东省滨州市阳信县九年级一模模拟化学试题(含答案)
评论
0/150
提交评论