蔡氏电路报告_第1页
蔡氏电路报告_第2页
蔡氏电路报告_第3页
蔡氏电路报告_第4页
蔡氏电路报告_第5页
已阅读5页,还剩2页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、非线性电路课程报告 电气工程学院 蔡氏混沌电路的 MATLAB 仿真 摘 要: 混沌是非线性系统中的常见现象。 本文应用 MA TLAB 软件对蔡氏电路进行了仿真分析, 并对仿真结果作了讨论,指出了这种研究方法的应用前景。 关键词: 蔡氏电路混沌动力学吸引子系统仿真 1.引言 作为一种普遍存在的非线性现象,混沌的发现对科学的发展具有深远的影响。混沌行为 是确定性因素导致的类似随机运动的行为,即: 一个可由确定性方程描述的非线性系统,其长 期行为表现为明显的随机性和不可预测性,我们就认为该系统存在混沌现象 混沌具有三个 特点:随机性;遍历性;规律性。混沌有一个很重要的性质:系统行为对初始条件非常

2、敏感。混 沌理论是架起确定论和概率论两大理论体系之间的桥梁,与相对论、量子力学一起被称为 20世纪物理学的三大革命。近年来,混沌现象及其应用成为一个研究热点,学者们对混沌 在通讯工程、电子工程、生物工程、经济学等领域中的应用进行着广泛的研究。许多学者通 过非线性电路对混沌行为进行了广泛地研究,其中最典型的是蔡氏电路,它是能产生混沌行 为的最小、最简单的三阶自治电路。 在电路与系统领域,由于蔡氏电路的提出,对混沌理论及其应用的研究也变得十分活跃。 蔡氏混沌电路是一个物理结构及数学模型都相对简单的混沌系统,然而它也是一个典型的混 沌电路,对蔡氏电路的研究有助于理解混沌的演化过程及其了解混沌相关特性

3、。由于混沌 动力学系统的复杂性,绝大多数混沌动力学系统难以用已知的函数表示其通解,所以通过数 值计算对混沌行为的时空演化进行描述是研究混沌的一种重要方法。 MATLAB 软件是以矩阵计算为基础的数值计算、模型仿真的优秀数学工具。借助 MATLAB软件强大的数值计算及仿真能力,使得对许多复杂的混沌系统的研究变得相对容 易和直观。 本文对其进行深入的数学分析;在MATIAB环境下,建立了该电路的仿真模型,通过 改变电路中的线性电阻值和系统状态变量初始值,对其非线性动力学行为进行仿真分析。分 析结果表明:在此种蔡氏电路中,可以观测到混沌产生的全过程。 2.蔡氏混沌电路 蔡氏电路是一种物理结构和数学模

4、型简单的混沌系统,该混沌系统也常被用来进行混沌 理论及应用方面的研究。该电路使用三个储能元件和一个分段线性电阻,电路如图1所示。 可以把电路分为线性部分和非线性部分其中线性部分包括:电阻R、电感L(含内阻r)和两 个电容C1与C2;非线性部分只有一个分段线性电阻R n,其伏安特性如图2所示。非线性 电阻是压控非线性电阻,它具有分段的伏安特性。 图1務氏电路原理图 图2蔡氏电路非线性部分V-I待性 根据电路结构,可以得到蔡氏电路的动力学方程如下 G警谧一眄-就耳 G 警1 = 将上述方程转化为标准的蔡氏方程,即为 dx y-f(x) dt dy x _ y z dt dz (2) dt 其中:

5、L2 L1, CR02, r(x) = f (x) =miX +0.5(m _mi)(x + 1 _ x_1) 3. MATLAB 仿真 为了进行计算机仿真分析,我们令 ot L2 7 L1 L2 CR02 =10 取 m0 = -0-2,= 0.4。 我们取初始值为(0.025,-0.022,0.8),应用MATLAB进行仿真,蔡氏电路仿真结果 为 图3 Uc-i1-i2双涡卷混沌吸引子 图4 i2-Uc平面双涡卷混沌吸引子 J Jk 离蛍靈迪咚口 Ejj) MtE.rw jrwfcvb谢rm i-1ikMi; N 灯W 3.5-2-16 -I 050D.5 I I 5215 id 图6i1

6、-i2平面双涡卷混沌吸引子 图5 Uc-i1平面双涡卷混沌吸引子 4.结论 简单论述了用 MATL AB这种优秀数据处理及仿真软件构建混沌系统过程,并对该系 统进行了仿真,对混沌信号及混沌系统一些特点进行了讨论。借助MATL AB数据处理及仿 真功能, 使我们可以更好地对混沌系统进行分析研究,这种方法对研究电子、通信、控制、 医学等领域中的混沌将有较大的应用价值。 参考文献 1 刘崇新非线性电路理论及应用M.西安:西安交通大学出版社,2007 2 王启志等基于蔡氏电路的 MATLAB仿真J.福建电脑,2008, 6 3 杨琨.蔡氏混沌电路的 MATLAB仿真J.电光系统,2005,1 附录 程序: fun cti on b208 t=0,100; t,y=ode45(chua,t,0.025;-0.02;0.8); Plot(y(:,1) ,y(:,2),y(:,3); 画岀图3 画岀图4 画岀图5 画岀图6 %plot(y(:,2),y(:,3); %plot(y(:,1),y(:,3); %plot(y(:,1),y(:,2); xlabel( il1 ),ylabel( uc ),zlabel( 1) grid fun cti onfty=chua(t,y) ga=-0.2; gb=0.4; bp=1; aa=7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论