



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二元一次方程组和它的解 教学设计学习目标1了解二元一次方程、二元一次方程组及其解的概念2会判断一对数是不是某个二元一次方程组的解3根据具体问题中的数量关系列出二元一次方程或二元一次方程组,体会二元一次方程组是刻画现实世界数量关系的有效模型学习探究问题 1足球赛规定:胜一场的 3 分,平一场的 1 分,负一场的 0 分,某队赛了9 场,共得 17 分已知这个对只负了 2 场,那么胜了几场?又平了几场呢?【思路导航】1题中的等量关系有两个:胜的场数平的场数=,胜的积分平的积分=2如果设胜了x 场,可列一元一次方程: 你选择的是哪个等量关系来列的方程?【思考】1问题中有两个未知数,如果设胜了 x 场
2、,平了 y 场,你能用方程把上面的等量关系表示出来吗?,2方程 、 有什么共同的特点?, 这样的方程叫二元一次方程3比赛场数必须同时满足两个等量关系,即未知数x、 y 必须同时满足 、 这两个方程,把这两个方程合在一起,写成就组成了一个二元一次方程组4方程组有几个不同的未知数?相同的未知数表示相同的量吗?【设计理由】 以足球比赛为背景来设计问题, 是因为多数学生比较熟悉, 让学生对这一问题有兴趣, 有亲切感; 思路导航的设计目的是让学生用已学过的知识来解决, 为与列方程组来解决形成比较, 让学生体会到列方程组解决实际问题的优点;思考的设计目的是让学生了解二元一次方程、二元一次方程组的概念。【使
3、用说明】 思路导航的环节根据学生实际可以不用, 直接让学生完成思考的几个问题;思考的几个问题建议学生独立完成,思考第二题可以让学生展开交流讨论。问题 2( 1),满足方程吗?,呢?你还能找到其它x、 y 的值满足方程吗?( 2),满足方程吗?,呢?( 3)你能找到一对x、 y 的值,同时满足方程和吗?【思考】,满足两个方程,是这两个方程的公共解,则把,叫二元一次方程组的解,记作二元一次方程组的解是一个数还是一对数?【设计理由】 对二元一次方程的解、 二元一次方程组的解的概念的理解是这节课的一个重要内容, 让学生通过计算去感受满足一个二元一次方程的未知数的值通常不止一组, 二元一次方程组的解要同
4、时满足两个方程, 即是这两个方程的公共解。【使用说明】首先要让学生明白满足方程就是未知数的值使方程左右两边相等;其次要给学生足够的时间去算,去验证,去体会。问题3判断是不是方程组的解?【学习反馈】1教材第 27 页习题第 2 题【设计理由】 会判断一对未知数的值是不是某个二元一次方程组的解是这节课又一重要目标。通过这个问题的解决可以让学生达成这一目标。【使用说明】 建议采用先做后说的方式完成。 即让学生独立完成后, 说出具体判断的步骤和方法。【总体说明】问题 1 、问题2,指向目标1。问题 1 让体会学习新知识的必要性,并结合具体例子了解相关概念;问题2,让通过计算,理解重要概念,解决教学中的重要内容;问题3,指向目标2。是对所学重要概念深层次理解与掌握的一个必不可少的环节。教师问题创生 学生问题发现星级检测 1二元一次方程组的解是()a bcd 2 教材第 26 页习题第 1 题 3如果是二元一次方程的一个解,则m= 4若方程组的解是,则a= , b= 5方程的正整数解有组,分别是【设计理由】达标检测由易到难,层层递进,螺
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年房地产物业管理服务规范资格统考考核试卷
- 2025年传媒行业新型主流媒体建设法治人才(如法治记者、法律评论员)培养合规考核试卷
- 2025年行政诉讼法资格准入应用考核试卷
- 2025年智能制造系统集成项目整体管理案例考核试卷
- 难点解析人教版八年级物理上册第5章透镜及其应用专项训练练习题(解析版)
- 难点解析-人教版八年级物理上册第5章透镜及其应用-透镜同步测评试卷(详解版)
- 数的认识与运算的内容和本质发布者:陈为强20250924 09445.0分(1个)评价 收藏 3点赞评论 2022年版义务教育数学课程标准指出课程内容的组织“要凸显整体性、一致性和阶段性”
- 难点解析-人教版八年级物理上册第6章质量与密度-质量专题攻克试题(含详细解析)
- 解析卷人教版八年级物理上册第4章光现象-光的色散专项攻克练习题(含答案详解)
- 解析卷人教版八年级物理上册第4章光现象专项测评试卷(含答案详解)
- 企业合并与合并财务报表课件:购并日的合并财务报表
- 辅警公安基础知识笔试模拟考试题(六)
- 孩子患脑炎后的护理
- 《rfid技术与应用》课件
- 2024年初中七年级英语上册单元写作范文(新人教版)
- 腺样体病人的护理
- 2025年10月自考13887经济学原理中级押题
- 2019-2023年北京市中考真题数学试题汇编:圆解答题(第24题)
- 国际经济与贸易《国际结算》课程教学大纲
- 11 第十一章 不停航施工方案与措施
- 医院卒中中心建设各种制度、流程汇编
评论
0/150
提交评论