公式法--完全平方公式的运用_第1页
公式法--完全平方公式的运用_第2页
公式法--完全平方公式的运用_第3页
公式法--完全平方公式的运用_第4页
公式法--完全平方公式的运用_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课题11.3公式法-完全平方公式的运用课型:新授课 年级:七年级单位:迁安市闫家店初级中学 姓名:尹红海教学目标:1 .能够正确识别符合用公式法分解的多项式,会运用完全平方公式分解因式2 .经历探索运用完全平方公式因式分解的过程,体会逆向思维在数学中的应用,同时了解换元的思想方法.3 .探索多项式因式分解的步骤与方法,体会化归思想的应用教学重难点:重点:用完全平方公式进行分解因式 .难点:根据多项式的特点,恰当地安排步骤,灵活地选用不同方法进行因式分解课前准备:多媒体课件.教学过程:一、温故知新,引入新课问题1:我们学习了哪些因式分解的方法?问题2:把下列各式分解因式:(1) ax4-9ay2

2、;(2) x4-i6.问题3:整式乘法中,我们除了学过平方差公式外,还学过了哪个乘法公式?处理方式:学生独立思考、交流,问题 1学生回答,问题2学生黑板板演,其余学生独立完成,师生共同纠错,并强调注意事项.问题3教师引导学生回答, 为新课引入铺垫.预设 学生回答.1 .提取公因式法和运用平力差公式法.2 .解:(1) ax4-9ay2=a(x4-9y2)= a(x2+3y)(x2-3y)(2) x4-16=(x2+4)(x2-4)=(x2+4)(x2+2)(x2-2)3.完全平方公式:(a b)2 =a2 2ab +b2.。有公因式,jc c .因式分解产口 0 c3【/过渡:我们能够利用平方

3、差公式分解因式,那么能不能用完全平方公式分解因式呢?本节课我们就一起探究这个问题.设计意图:复习以习题的形式回忆两种提公因式和平方差公式分解因式的方法,有利于学生衔接前后知识,形成清晰的知识脉络,为学生后面的学习作好铺垫二、合作探究,获取新知活动内容1:类比利用平方差公式因式分解,把乘法公式(a+b) 2=a2+2ab+b2,(a-b) 2=a2-2ab+b2反过来,就得到 a2+2ab+b2= (a+b) 2, a2-2ab+b2= (a-b) 2.请结合 a2+2ab+b2= (a+b) 2, a2-2ab+b2= (a-b) 2,完成以下探究问题.(1)完全平方公式特点:左边:.右边:.

4、(2)形如 a2+2ab+b2, a2-2ab+b2的式子我们称为 .处理方式:类比利用平方差公式分解因式, 让学生以小组讨论、 合作交流的方式探讨完 全平方公式的特点, 及什么是完全平方式, 小组展示结论,教师依据学生回答中出现的问题 点评并强调公式a2+2ab+b2= (a+b) 2与a2-2ab+b2= (a-b) 2,叫做因式分解的完全平方公式; a2+2ab+b; a2-2ab+b2叫做完全平方式.预设学生回答.1 .完全平方公式特点:左边是三项式,其中首末两项分别是两个数(或两个式子)的完全平方.这两项的符号相同,中间一项是这两个数(或两个式子)的积的 2倍,符号正负均可.右边是这

5、两个数(或两个式子)的和(或者差)的平方 2 .形如a2+2ab+b2, a2-2ab+b2的式子称为完全平方式.设计意图:通过小组合作学习,让学生在已有知识的基础上,加深对完全平方公式的理解,对完全平方式特征的认识,进一步感受因式分解与整式乘法的关系3 固训练1:1 .下列各式是不是完全平方式?若不是,请说明理由.(1 )a2 -4a +4 ; (2 ) x2 +4x +4y2 ; (3 )x2 -x +1;(4 ) a2 -ab +b2 .4 .22 一 一 .2 .已知4x +kxy +9y是一个完全平万式,则 k是多少?处理方式:学生独立做题,然后小组交流,教师选代表回答并及时矫正.对

6、于第二题可适当提醒学生考虑完全平方式的两种形式.预设学生回答.1 ( 1)是 . ( 2)不是;因为4x 不是 x 与 2y 乘积的 2 倍;(3)是;(4)不是;因为ab不是a与b乘积的2倍.2 k是土2,因为kxy是完全平方式中的乘积的2倍对应的项,而完全平方式有两种形式,符号可正可负 . 所以它对应的答案有两个.设计意图: 通过题目练习一方面加深学生对完全平方式特征的理解, 并能顺利的辨别哪些是完全平方式, 为利用完全平方式分解因式打下基础. 另一方面 教师可以更好的了解学生的掌握情况,以便及时的调整教学.活动内容 2:通过对 a2+2ab+b2= (a+b) 2, a2-2ab+b2=

7、 (a-b) 2和 a2-b2=(a+b)(a-b)的学 习,结合整式乘法,你能说说什么是因式分解的公式法吗?处理方式: 学生小组讨论后尝试归纳, 教师总结点评, 明确运用平方差公式和完全平方公式进行因式分解. 预设学生回答 .由分解因式与整式乘法的关系可以看出, 如果把乘法公式反过来, 那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.设计意图: 通过小组合作学习, 让学生在理解的基础上, 加深对公式法进行因式分解的认识,正确把握各公式的特征,并根据多项式的形式和特点灵活选择用公式进行因式分解.巩固训练2:下列各式:-x2-i6y2 -a+9b2 m2-4n2 -x4+y

8、4 x2+y2+2xy-a2-2ab+b2 m2-4mn+4n2 4a2-2a+1 其中,能用公式法因式分解的个数是( ) a 5 b 4 c 3 d 2处理方式: 学生独立完成后,小组展示答案,教师点评 .三、学以致用,解决问题例 3 把下列完全平方式分解因式:( 1 ) x2+14x+49 ;( 2) ( m n) 2 6(m n) 9.处理方式: 让学生观察例题两式的特点, 引导学生对照完全平方公式, 明确公式中的 a、 b 在 x2+14x+49 与( m+n) 2-6(m+n)+9 中分别是什么 ( a、 b 可以是单相式, 也可以是多项式) , 并尝试用语言表述加以理解,如x2+2

9、x7x x+72是x与7两数的平方和,加上这两数积的2倍 小组讨论后由学生分别口述解题过程, 教师借助多媒体展示解题过程, 让学生进一步理 解并规范如何使用完全平方公式进行因式分解解:(1) x2+l4x+49= x2+ 2xxx 7+ 72= (x + 7)2.j j j j j j ja2 +2 x a x b+ b2=(a + b)2(2) ( m n) 2 6(m n) 9=(m+n)22 (m+n)x3+322 =( m n) 322 =(m n 3)巩固训练3:把下列各式分解因式:( 1) x2y2-2xy+1 ;(2) 4-12(x-y)+9(x-y)2处理方式: 选 2 名学生

10、板演,其他同学在练习本上完成,教师巡视指导. 学生完成后,. 预设学生回答.解: ( 1) x2y2-2xy+1=(xy) 2-2xy+1=(xy-1) 2;(2) 4-12(x-y)+9(x-y)2=22-2x2x3(x-y)+3(x-y) 2=2-3(x-y) 2=(2 -3x+3y)2 .设计意图: 培养学生对完全平方公式分解因式的应用能力, 让学生理解在完全平方公式 中的a与b不仅可以表示单项式,也可以表示多项式.例 4 把下列各式分解因式:( 1 ) 3ax2+6axy+3ay2;( 2) -x2 -4y2+4xy处理方式: 让学生观察题目特点, 展开小组讨论, 教师引导学生体会在因

11、式分解中, 多项式有公因式要先提公因式, 再进一步因式分解; 当首项是二次项且系数为负数时, 一般应先提出“”号或整个负数. 学生口述解题过程,师及时点评并多媒体展示解题过程.解:( 1) 3ax2+6axy+3ay2=3a(x2+2xy+y2) =3a(x+y)2;(2) -x2-4y2+4xy=-(x2+4y2-4xy)=-(x2-4xy+4y2)=-x2-2 x 2y+(2y)22=-(x-2y)2巩固训练4:把下列各式分解因式:( 1) - 2xy-x2- y2 ; ( 2 ) 2mx2-4mx+2m 处理方式: 找两名学生板演, 其他同学在练习本上完成,教师巡视学生并辅导, 做完后教

12、师展示出答案. 预设学生 .解: ( 1) - 2xy- x2-y2=- (x2+2xy+y2)=- (x+y)2;( 2) 2mx2-4mx+2m2=2m(x -2x+1)=2m(x-1)2设计意图: 使学生清楚地了解提公因式法 (包括提取负号) 是分解因式首先考虑的方法,再考虑用完全平方公式分解因式思考: 通过你所学的因式分解的知识, 想一想对于一个多项式, 你如何对它进行因式分解呢?处理方式: 引导学生展开小组讨论,学生代表展示,教师多媒体总结因式分解的一般步骤:( 1)如果多项式各项含有公因式,应先提公因式;( 2)如果多项式各项不含有公因式,可以尝试用公式法因式分解;( 3)如果上述

13、方法都不能因式分解,可以尝试整理多项式,然后分解;( 4)因式分解必须分解到每一个因式都不能分解为止.四、回顾反思,盘点收获通过本节课的学习, 你都掌握了哪些知识?你还有什么困惑?请你先想一想, 再说一说 .处理方式: 学生畅所欲言.我的收获 我的困惑 设计意图: 通过学生的回顾与反思, 强化学生对整式乘法的完全平方公式与因式分解的完全平方公式的互逆关系的理解,发展学生的观察能力和逆向思维能力,加深对类比数学思 想的理解.五、达标测试,深化提高a组:1 .下列多项式中,能用完全平方式分解的是()a. a2+2ax+4x2;b . a2-4ax2+4x2;c. -2x+1+4x2;d. x4+4+4x2.2 .正方形的面积为 a2+2a+1,则它的周长是()a. a+1 b. a+4 c. 4a+1 d. 4a+43 .若16x2-mxy+9y2是一个完全平方式,那么 m的值是.4 .把下列各式因式分解:(1) a2b-2ab+b;(2) (x+y)2-l2z(x+y)+36z2.b组:5.已知x, y是一个等腰三角形的两边长,且满足x2+y2-4x-6y+13=0 ,求这个等腰三角形的周长.参考答案:1. d 2. d 3. 244. b(a-1)2; (x+y-6z) 25. 7 或 8.设计意图:通过学生的反馈测试,使教师能全面了解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论