关于发电机的数学建模_第1页
关于发电机的数学建模_第2页
关于发电机的数学建模_第3页
关于发电机的数学建模_第4页
关于发电机的数学建模_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、发电机使用计划的数学模型四川理工学院组员:薛倩王军周春花2011-4-23发电机使用计划的数学模型摘要本文讨论如何合理计划使用发电机,使每天发电机的总成本最少的问题,是一个 分段优化的问题。对这个问题时间分段较少时,所求出的最终值才会更精确,建立数 学模型,利用软件编程求解。对于问题一建立以发电机每天总成本最小值作为目标函数的整数规划模型1,从题目所给的已知条件、数据以及合理的假设条件,分析确定数学模型的约束条件,然后 对此数学模型1利用lingo软件编程,求解该数学模型,找出最优解,得到每天发电机 最小成本为XXXX元。问题二在问题一的基础上,改变相应约束条件,同样运用模型1,修改lingo

2、程序, 求解找出最优解,解得发电机每天总成本为 XXXX元。问题三,要求在任意时刻,发电机组必须流出 20%的发电能力力量,也即是要求 实际输出功率的80%用于满足每日电力需求量,同样运用问题一中建立的模型,在lingo 变成时对约束条件中的数据稍作修改,解得发电机每天总成本为XXXX元。关键词:分段优化整数规划最优解最小总成本一、问题的重述为了满足每日电力的需求(单位:兆瓦),可以选用四种不同类型的发电机。每 日电力需求如下表示:表一每日用电需求(兆瓦)时段0点-6点6点-9点9点-12点12点-14点14点-18点18点-22点22点-24点需求1200032000250003500025

3、0003000018000每种发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于某一最 小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的 每小时成本,并且如果功率咼于最小功率,则超出部分的功率每兆瓦每小时还存在一 个成本,即边际成本。这些数据均列于下表中。表二发电机相关数据可用 数量最小输出功 率(兆瓦)最大输出 功率(兆 瓦)固定成本 (元/小 时)每兆瓦边际 成本(兀/ 小时)启动成本(元)型号1107501750P 22505000 1型号241000150018001600型号38P 12002000:37502400 1型号431800350048

4、001200只有在某个时间段启动或者关闭发电机。与启动发电机不同,关闭发电机不需要 付出任何代价。以此,有如下几个问题:(1)在每个时间段应分别使用哪些发电机方能使每天的总成本最小?(2) 如果型号2的发电机的可用数量变为6,则发电机的使用计划是否会发生 变化?(3) 如果要求在任意时刻,正在工作的发电机组必须留出20%勺发电能力余量,以防用电量突然上升,问发电机的使用计划如何?( 选做)二、问题的分析此题主要是考虑的是一个最优解问题,也就是说此问题是一个分段优化的问题。 对于此类问题,只有当时间分段较少时,所求出的最终值才会更精确。在本文中,发 电机的型号、数量以及发电机在各个时间段的发电功

5、率是不一致的,所以一般很难求 出精确的结果。为此,在对所求解影响不大的前提下,我们需要作出一定的假设,从 而通过有效的近似求解的方法得出具有一定代表意义的结果。对于发电机的使用计划,根据已知的相关信息可知,发电机每天的使用成本与发 电机的型号,各种发电机的使用数量、输出功率、启动的次数相关。为此,我们将每 天分为7个时间段,而每天发电机使用的总成本就等于 7个时间段发电机使用成本之 和。尔后确定每个时间段发电机使用的型号、不同型号的发电机使用的数量以及相对 应的输出功率。再把发电机的使用成本分为三个部分,即启动成本、固定成本及边际 成本,据此建立每个时间段使用发电机所花费的成本的数学模型,从而

6、求解出每天发 电机使用的总成本。根据题中提供的的数据,由于每个时间段的使用的功率不同,如 果正确的关闭或启动哪种型号的发电机是必须要考虑的问题。此外,发电机在第一时 间段与后六个时间段的算法有所不同,故要分时段求出各时段的启动成本。三、符号及变量说明i:表示时间段的参数,它的取值为:i=1,2,3, 4, 5, 6,7。j:表示发电机型号的参数,它的取值为:j=1,2,3, 4。nij:表示第i个时间段使用型号j发电机的数量。ti:表示发电机在第i个时间段的工作时间。s:表示每天发电机的工作总成本。s:表示发电机在第i个时间段的工作成本。sj:表示型号j发电机在第i个时间段的工作成本。pi:表

7、示第i时间段的所需求的功率。 yj:表示型号j发电机的最小输出功率。xij: 表示第 i 个时间段型号 j 单个发电机的输出功率。aj: 表示型号 j 发电机发电时的固定成本。bj: 表示型号 j 发电机工作时每兆瓦的边际成本。cj: 表示型号 j 单个发电机的启动成本。 dij: 表示第 i 个时间段型号 j 发电机的总启动成本。四、问题的基本假设 1发电机工作时它的输出功率不变; 2发电机的最小输出功率与最大输出功率保持不变; 3发电机在每个时间段启动或关闭时的时间不计; 4不计发电机的自身损耗;5发电机组在传输电的过程中消耗的功率不计; 6不计发电机在发电过程中的热消耗;五、模型的建立和

8、求解问题一1.1 模型的建立1.1.1 每天 7 个时间段的总成本为:s=s 1+s2+s3+s4+s5+s6+s7;1.1.2 第 i 个时间段的成本为:s i =si1 +si2 +si3 +si4 ;1.1.3 第 i 个时间段型号 j 发电机的成本为:sij =aj *n ij +(xij -y j )*b j*t i*nij +dij ;1.1.4 第 i 个时间段型号 j 发电机的总启动成本为:dj =Cj*(n(i+i)j -n ij)(注: l=i=7,l=jnj 时,也才会产生启动成本,而当 n(i+1)j =nij 时,它的启动成本为 0 元。)1.1.5 第 i 个时间段

9、所需要的用电量为:pi=xi1*ni1+xi2*ni2+xi3*ni3+xi4*ni4;1.1.6 目标函数 s74aj*n ij xij yj *b j*ti *n ij Cj* n(i+1)j nij ;i 1 j 1pi =xi1 *n i1 +xi2 *ni2 +xi3 *n i3 +xi4 *n i4 ;0=ni1=10;0=n i2=4;0=n i3=8;0=n i4=3;750=Xii=1750;1000=xi2=1500;1200=xi3=2000;1800=xi4=3500.注:结果取整数1.2模型的求解 通过Lingo程序,求解过程如附件一。每天使用发电机的总成本最小,在每

10、个时间段使用个各种时段用的各种型号的发电机 的数量见表一。表第一时间段第二时间段第三时间段第四时间段第五时间段第六时间段第七时间段型号1发电机使用的数 量型号2发电机使用的数 量型号3发电机使用的数 量型号4发电机使用的数 量问题二问题的分析其建立数学模型的思路与求解的过程与问题一一致,由于型号2发电机的数量发生了变化,使得其约束条件发生了改变。现根据所改变的数据重新求结果,将所求出 的最优解与问题一求出的最优解相比较,从而得知发电机的使用计划是否发生改变。模型的建立目标函数S74aj*n j Xj yj *b j*t, *n j Cj* n;i 1 j 1Pi =Xi1 *ni1 +Xi2

11、*ni2 +Xi3 *ni3 +Xi4 *ni4;0=ni1=10;0=n i2=6;0=n i3=8;0=n i4=3;750=Xi1=1750;1000=xi2=1500;1200=Xi3=2000;1800=xi4=3500.注:结果取整数模型的求解通过Lin go程序,求解过程见附件二。在有最优解时,所求出的各种型号的使用情况详见表二表二第一时间段第二时间段第三时间段第四时间段第五时间段第六时间段第七时间段型号1发电机的使用数 量型号2发电机的使用数 量型号3发电机的使用数 量型号4发电机的使用数 量将表一与表二比较后得知,当型号 2发电机的使用数量发生改变时,发电机的使用计 划会发生

12、改变。冋题二问题的分析题目要求在任意时刻,正在工作的发电机必须留出20%的发电能力余量,因此正在工作的发电机组以80%的发电能力,来满足任意时间段的用电需求。其数学模型建 立的思路以及求解的方法与问题一相一致。模型的建立目标函数S74a*n j Xj yj *b j*t, *n j 5* n;i 1 j 1Pi =Xii *nii +Xi2 *ni2 +Xi3 *ni3 +Xi4 *ni4;0=ni1=10;0=n i2=4;0=n i3=8;0=n i4=3;750=Xi1 =1750;1000=xi2=1500;1200=Xi3=2000;1800=xi4=3500.模型的求解通过Lin

13、go程序,求解过程见附件三。得出模型的最优解详见表三表三第一时间段第二时间段第三时间段第四时间段第五时间段第六时间段第七时间段型号1发电机的使用数 量型号2发电机的使用数 量型号3发电机的使用数 量型号4发电机的使用数 量六、模型的误差分析本文针对发电机的使用计划问题,采用的是最优化算法,其中运用到的思想为分 段思想。在建立模型以及计算当中,假设了发电机的输出功率不变,但是这实际上是 做不到的;在实际问题中,开关发电机是存在着一定的时间的,这也会影响发电机的 输出效率;以及电能在传输过程中的损耗,发电机的自身损耗,这些都会使我们用于 计算的数据与实际数据产生一定的误差,从而导致运算结果与实际情

14、况有一定的出 入。七、模型的评价1模型的优点本文采用分段计算法,基于每天各个时间段的用电需求量不的同,以此计算出各个 时间段各种型号的使用数量,使得每天发电机的使用总成本最小。本文采用最优化算法,通过Lin go程序软件的计算得出,在每个时间段交替时候尽可 能的只是关闭发电机,从而降低发电机的启动成本。我们建立的数学模型,求出了第一天内发电机的使用计划。当然,在实际生活中, 我们发电机的使用计划时间是比较长的,通过我们求得各个时间段各型号的发电机的 使用数量分析来看,在24: 00与00: 00的交替过程中,只需要关掉几台发电机即 可。第二天就依然可以按照第一天的使用计划方案继续工作,这样就构

15、成了一个循 环,无论使用计划多长时间都可以实现。在整体中,运用Lin go程序软件中最优化算法来求得各时间段各型号发电机使用的数 量使得发电机使用成本最低,是产家投入最少的资本获得最大的利润。有顺序,有步骤地给出优化方案,把复杂的实际问题转化为简单化的数学问题,通 俗易懂。2模型的不足分段计算出的各型号发电机使用的数量,要用于下一个时间段启动成本的计算, 因而前一段的计算的结果将影响到后一时间段的发电机使用的数量,所以每时段的计 算务必要准确。而本题中设定的未知数较多,比较容易出错。本题所采用的算法所花 费的时间比其他算法计算的时间较长。八、模型的改进及推广1.模型的改进 因为每个时间段中的计算误差都存在误差,所以尽量的减少分段的数量,以减小 计算误差,来时的结果更加精确,从而减小计算出的结果与实际中的出入。2 模型的推广 本文解决发电机使用计划问题的方案在对股票投资计划,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论