电路1112章二端口网络课件_第1页
电路1112章二端口网络课件_第2页
电路1112章二端口网络课件_第3页
电路1112章二端口网络课件_第4页
电路1112章二端口网络课件_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电路1112章二端口网络1 11 11 二端口网络二端口网络 11-1 11-1 二端口网络二端口网络 11-2 11-2 二端口网络的方程与参数二端口网络的方程与参数 11-3 11-3 二端口网络的等效电路二端口网络的等效电路 11-5 11-5 二端口网络的连接二端口网络的连接 电路1112章二端口网络2 具有多个端子与外电路连接的网络具有多个端子与外电路连接的网络 (或元件),称为多端网络(或多端元(或元件),称为多端网络(或多端元 件)。在这些端子中,若在任一时刻,件)。在这些端子中,若在任一时刻, 从某一端子流入的电流等于从另一端子从某一端子流入的电流等于从另一端子 流出的电流,这

2、样一对端子,称为一个流出的电流,这样一对端子,称为一个 端口。二端网络的两个端子就满足上述端口。二端网络的两个端子就满足上述 端口条件,故称二端网络为单口网络。端口条件,故称二端网络为单口网络。 假若四端网络的两对端子分别均满足端假若四端网络的两对端子分别均满足端 口条件,称这类四端网络为二端口网络口条件,称这类四端网络为二端口网络 ,也称双口网络。,也称双口网络。 11-1 11-1 二端口网络二端口网络 电路1112章二端口网络3 单口网络单口网络 图图11-1(a)11-1(a)只有一个端口电压只有一个端口电压 和一个端口电流。无源单口网络,其端口特和一个端口电流。无源单口网络,其端口特

3、 性可用联系性可用联系u- -i关系的一个方程关系的一个方程 u= =Roi 或或 i=Gou来描述。二端口网络来描述。二端口网络 图图11-1(b)11-1(b)则有则有 两个端口电压两个端口电压u1、u2和两个端口电流和两个端口电流i1、i2。 其端口特性可用其中任意两个变量列写的两其端口特性可用其中任意两个变量列写的两 个方程来描述,显然,共有六种不同的表达个方程来描述,显然,共有六种不同的表达 形式。形式。 图图11-111-1单口网络与双口网络单口网络与双口网络 电路1112章二端口网络4 通常,只讨论不含独立电源、初始储能通常,只讨论不含独立电源、初始储能 为零的线性二端口网络,现

4、分别介绍它为零的线性二端口网络,现分别介绍它 们的表达式。们的表达式。 本章仅讨论实际应用较多的四种参数:本章仅讨论实际应用较多的四种参数: Z Z参数、参数、Y Y参数、参数、H H参数和参数和A A参数。参数。 并注意与第九章并注意与第九章9-1(9-1(次级不是开路就是次级不是开路就是 短路短路) )的不同。的不同。 电路1112章二端口网络5 11-2 11-2 二端口网络的方程与参数二端口网络的方程与参数 11-2-1 Z11-2-1 Z参数参数 若将二端口网络的端口电流作为自变量,则若将二端口网络的端口电流作为自变量,则 可建立如下方程:可建立如下方程: 其中,其中, 222112

5、11 2221212 2121111 ,ZZZZ IZIZU IZIZU 称为二端口网络的称为二端口网络的 Z Z参数。四个参数的计算方法如下:参数。四个参数的计算方法如下: 0 1 1 11 2 I I U Z 为输出端口开路时的输入阻抗。为输出端口开路时的输入阻抗。 电路1112章二端口网络6 为输入端口开路时的转移阻抗。为输入端口开路时的转移阻抗。 为输出端口开路时的转移阻抗。为输出端口开路时的转移阻抗。 为输入端口开路时的输出阻抗。为输入端口开路时的输出阻抗。 由于由于Z Z参数均具有阻抗量纲,且又是在输入或参数均具有阻抗量纲,且又是在输入或 输出端口开路时确定,因此输出端口开路时确定

6、,因此Z Z参数又称为开路参数又称为开路 阻抗参数。阻抗参数。 0 2 1 12 1 I I U Z 0 1 2 21 2 I I U Z 0 2 2 22 1 I I U Z 电路1112章二端口网络7 若将二端口网络的端口电压作为自变量,则若将二端口网络的端口电压作为自变量,则 可建立如下方程:可建立如下方程: 11-2-2 Y11-2-2 Y参数参数 其中其中, , 为输出端口短路时的输入导纳。为输出端口短路时的输入导纳。 22211211 2221212 2121111 ,YYYY UYUYI UYUYI 称为二端口网络的称为二端口网络的 Y Y参数。四个参数的计算方法如下:参数。四个

7、参数的计算方法如下: 0 1 1 11 2 V U I Y 电路1112章二端口网络8 为输出端口短路时的转移导纳。为输出端口短路时的转移导纳。 为输入端口短路时的转移导纳。为输入端口短路时的转移导纳。 为输入端口短路时的输出导纳。为输入端口短路时的输出导纳。 由于由于Y Y参数均具有导纳量纲,且又是在输入或参数均具有导纳量纲,且又是在输入或 输出端口短路时确定,因此输出端口短路时确定,因此Y Y参数又称为短路参数又称为短路 导纳参数。导纳参数。 0 2 1 12 1 U U I Y 0 1 2 21 2 U U I Y 0 2 2 22 1 U U I Y 电路1112章二端口网络9 11-

8、2-3 H11-2-3 H参数参数 若将二端口网络的若将二端口网络的 作为自变量,则可作为自变量,则可 建立如下方程:建立如下方程: 其中其中, , 为输出端口短路时的输入阻抗。它具有阻为输出端口短路时的输入阻抗。它具有阻 抗量纲。抗量纲。 21,U I 22211211 2221212 2121111 ,HHHH UHIHI UHIHU 称为二端口网络的称为二端口网络的 H H参数。四个参数的计算方法如下:参数。四个参数的计算方法如下: 0 1 1 11 2 U I U H 电路1112章二端口网络10 为输入端口开路时的反向转移电压比。无量纲。为输入端口开路时的反向转移电压比。无量纲。 为

9、输出端口短路时的正向转移电流比。无量纲。为输出端口短路时的正向转移电流比。无量纲。 为输入端口开路时的输出导纳。具有导纳量纲。为输入端口开路时的输出导纳。具有导纳量纲。 由于由于H H参数中,参数有各种量纲,因此参数中,参数有各种量纲,因此H H参数又称参数又称 为混合参数。为混合参数。 0 2 1 12 1 I U U H 0 1 2 21 2 U I I H 0 2 2 22 1 I U I H 电路1112章二端口网络11 11-2-4 A11-2-4 A参数参数 若将二端口网络的若将二端口网络的 作为自变量,则可作为自变量,则可 建立如下方程:建立如下方程: 其中,其中, A A参数。

10、四个参数的计算方法如下:参数。四个参数的计算方法如下: 为输出端口开路时的反向转移电压比。无量纲为输出端口开路时的反向转移电压比。无量纲。 22, I U DCBA IDUCI IBUAU , 221 221 称为二端口网络的称为二端口网络的 0 2 1 2 I U U A 电路1112章二端口网络12 为输出端口短路时的反向转移阻抗。它具有为输出端口短路时的反向转移阻抗。它具有 阻抗量纲。阻抗量纲。 0 2 1 2 U I U B 0 2 1 2 I U I C 为输出端口开路时的正向转移导纳。它具有为输出端口开路时的正向转移导纳。它具有 导纳量纲。导纳量纲。 0 2 1 2 U I I D

11、 为输出端口短路时的反向转移电流比。无量纲。为输出端口短路时的反向转移电流比。无量纲。 A A参数也属于混合参数,但工程上常称参数也属于混合参数,但工程上常称A A参数为参数为 ( (正向正向) )传输参数。传输参数。 电路1112章二端口网络13 相应的参数用矩阵形式表示为:相应的参数用矩阵形式表示为: Z ZZ ZZ 1112 2122 Y YY YY 1112 2122 H HH HH 1112 2122 A AB CD 当然,还应该要两种参数,它们是:当然,还应该要两种参数,它们是: 另一种混合参数,另一种混合参数,G参数参数; (反向反向) 传输参数,传输参数,B参数参数。 电路11

12、12章二端口网络14 11-2-5 11-2-5 各种参数的相互转换各种参数的相互转换 二端口网络的各种参数是从各种不同的二端口网络的各种参数是从各种不同的 角度得到的,是对于同一个二端口网络角度得到的,是对于同一个二端口网络 外部特性的描述。因此,各种参数之间外部特性的描述。因此,各种参数之间 必然存在内在的联系,只要参数存在,必然存在内在的联系,只要参数存在, 可以从一种参数转换成另一种参数。可以从一种参数转换成另一种参数。 书上书上P.317P.317表表11-111-1列出了上述四种参数列出了上述四种参数 之间的转换关系。可供参阅。之间的转换关系。可供参阅。 电路1112章二端口网络1

13、5 有关每一种参数特点的讨论:有关每一种参数特点的讨论: 1.1.对于任意二端口网络需用四个参数来描对于任意二端口网络需用四个参数来描 述;述; 2.2.对于无源对于无源( (无受控源无受控源) )二端口网络,由互二端口网络,由互 易定理可知:互阻抗、互导纳相等,即易定理可知:互阻抗、互导纳相等,即 ZZYY 12211221 ,由表由表11-111-1可得:可得: HH Y Y AD BC Y YY Y 1221 12 11 11 22 21 2 1 , 可见,无源二端口网络只有三个参数是独可见,无源二端口网络只有三个参数是独 立的。立的。 电路1112章二端口网络16 3.3.对于既无源又

14、对称的二端口网络,由对于既无源又对称的二端口网络,由 于输入端口和输出端口的阻抗或导纳相于输入端口和输出端口的阻抗或导纳相 等,故四个参数中只有两个是独立的。等,故四个参数中只有两个是独立的。 下面举例说明已知双口网络,求双口网络下面举例说明已知双口网络,求双口网络 参数的方法:参数的方法: 1.1.直接应用定义来做;直接应用定义来做; 例:试求下图所示二端口网络的例:试求下图所示二端口网络的Z Z参数。参数。 + + 1 u 2 u 1 i 2 i R CC Cj R I U Z I 1 0 1 1 11 2 电路1112章二端口网络17 由于此网络是无源对称网络,有由于此网络是无源对称网络

15、,有 得得Z Z参数为:参数为: R I U Z I 0 2 1 12 1 ZZZZ 2 11 22 21 1 , Z R j C R RR j C 1 1 电路1112章二端口网络18 2.2.列写网络方程列写网络方程( (节点方程、网孔方程节点方程、网孔方程) )来来 做。做。 例:求下图所示例:求下图所示T T型二端口网络的型二端口网络的Z Z参数。参数。 得得Z Z参数为:参数为: + + 1 i 2 i Z C Z AZ B 212122 212111 )()( )()( IZZIZIIZIZU IZIZZIIZIZU CBCCB CCACA Z ZZZ ZZZ ACC CBC 列网

16、孔方程列网孔方程 1 u 2 u 电路1112章二端口网络19 如果需求如果需求Y Y参数,由表参数,由表11-1,11-1,或转变自变或转变自变 量的方法,得量的方法,得 可以看出,可以看出,1.1.参数转换是有条件的,即参数转换是有条件的,即 2 11 1 21 21122211 121211 2221 1211 221 111 2 2 12 1 22 21122211 212122 2221 1211 222 121 1 U Z U Z ZZZZ UZUZ ZZ ZZ UZ UZ I U Z U Z ZZZZ UZUZ ZZ ZZ ZU ZU I ZZ ZZ 电路1112章二端口网络20

17、 2.2.并不是所有二端口网络六种参数都存在并不是所有二端口网络六种参数都存在 。 它无它无Z Z参数参数 Z 0 ZZ AB 0 当当 时,时, + + 1 i 2 i Z Z ZZ ZZ Z 0 它无它无Y Y参数参数 对偶地,对偶地, + + 1 i 2 iY Y YY YY Y 0 1 u 2 u 1 u 2 u 电路1112章二端口网络21 如如CCCVCCCV,它有,它有H H参数。参数。 + + 1 i i1 2 i 0 00 0 00 2 1 2 1 H u i i u 0 0 0 0 2 1 2 1 n n H u i n n i u 如理想变压器,它有如理想变压器,它有H

18、H参数。参数。 + 1 i2 i * + n : 1 1 u2 u 1 u 2 u 电路1112章二端口网络22 例:试求下图所示电路的例:试求下图所示电路的Y Y参数。参数。 1 U 2 U I1 I223 1 + + + X U X U 5 . 0 解:设二端口网络两端加电压源,列网解:设二端口网络两端加电压源,列网 孔方程。孔方程。 21 221 121 5 .04 3 IIU UUII UII X X 消去变量消去变量 : X U 电路1112章二端口网络23 这就是这就是Z Z参数的方程参数的方程Z Z参数矩阵。如果需求参数矩阵。如果需求 Y Y参数,只需改变上述方程的形式即可。参数

19、,只需改变上述方程的形式即可。 221 121 2 9 2 3 3 UII UII 221 121 4 1 8 1 12 1 8 3 IUU IUU 这就是这就是Y Y参数的方程和参数的方程和Y Y参数矩阵。如参数矩阵。如 果需求其它参数,方法是一样的。果需求其它参数,方法是一样的。 Y 3 8 1 1 2 1 8 1 4 Z 31 3 2 9 2 电路1112章二端口网络24 如果改变二端口网络两端为电流源,如果改变二端口网络两端为电流源, 列节点方程也是可以的。列节点方程也是可以的。 I1 I21 U 2 U 23 1 + + + X U X U 5 . 0 XX XX X UIUU UU

20、UU IUU 6 1 3 1 3 1 6 1 3 1 2 1 ) 3 1 2 1 1( 2 1 2 1 22 21 11 电路1112章二端口网络25 消除中间变量消除中间变量 。得。得Y Y参数方程和参数方程和Y Y参数矩参数矩 阵。阵。 X U 221 121 4 1 8 1 12 1 8 3 IUU IUU Y 3 8 1 1 2 1 8 1 4 电路1112章二端口网络26 11-3 11-3 二端口网络的等效电路二端口网络的等效电路 等效电路法是电路分析的主要方法等效电路法是电路分析的主要方法, , 从前面的从前面的 知识可知:任意无源线性单口网络其外部特性知识可知:任意无源线性单口

21、网络其外部特性 都可以用一个等效阻抗或等效导纳来表征;同都可以用一个等效阻抗或等效导纳来表征;同 样地,我们已经知道,任意无源线性二端口网样地,我们已经知道,任意无源线性二端口网 络其外部特性都可以用三个参数来确定。那么络其外部特性都可以用三个参数来确定。那么 ,只要能找到由三个阻抗或导纳组成简单的二,只要能找到由三个阻抗或导纳组成简单的二 端口网络,如果其网络参数与原二端口网络的端口网络,如果其网络参数与原二端口网络的 参数相同,则就说明这两个二端口网络的外部参数相同,则就说明这两个二端口网络的外部 特性相同,即它们相互等效。二端口网络常见特性相同,即它们相互等效。二端口网络常见 的最简单结

22、构为的最简单结构为T T形形和和 形形两种形式。两种形式。 电路1112章二端口网络27 本节介绍本节介绍Z Z参数、参数、Y Y参数和参数和H H参数的等效电参数的等效电 路。路。 由由Z Z参数方程:参数方程: 可构成如图所示的含两个受控源的等效可构成如图所示的含两个受控源的等效 电路:电路: 如果将如果将Z Z参数方程改变一下,可得:参数方程改变一下,可得: 2221212 2121111 IZIZU IZIZU + + + + 1 U 2 U I1 I2 Z11Z22 Z I 21 1 Z I 122 电路1112章二端口网络28 由此可得如下图所示的由此可得如下图所示的T T形等效电

23、路:形等效电路: )()( )()( 2112212221)12212 2112112111 IIZIZZIZZU IIZIZZU + + I1 I2 ZZ 1112 ZZ 2212 () ZZI 21121 Z12 上述两种等效电路适合上述两种等效电路适合任意任意二端口网络。二端口网络。 2 U 1 U 电路1112章二端口网络29 当二端口网络为无源线性网络时,由互当二端口网络为无源线性网络时,由互 易定理:易定理: ,等效电路简化为无,等效电路简化为无 源源T T形等效电路:形等效电路: ZZ 1221 + + I1 I2 ZZ 1112 ZZ 2212 Z12 上述等效电路适合上述等效

24、电路适合任意线性任意线性二端口网络。二端口网络。 1 U 2 U 电路1112章二端口网络30 + + I1 I2 Y 11Y 22121U Y 212U Y 同样地,由同样地,由Y Y参数方程:参数方程: 2221212 2121111 UYUYI UYUYI 可构成如下图所示的含两个受控源的等效可构成如下图所示的含两个受控源的等效 电路:电路: 1 U 2 U 电路1112章二端口网络31 由此可得如下图所示的由此可得如下图所示的 形等效电路:形等效电路: )()()( )()( 121221222112212 2112112111 UUYUYYUYYI UUYUYYI 如果将如果将Y Y

25、参数方程改变一下,可得:参数方程改变一下,可得: + + I1 I2 YY 1112 YY 2212 11221 )(UYY Y 12 1 U 2 U 电路1112章二端口网络32 当二端口网络为无源线性网络时,由当二端口网络为无源线性网络时,由 互易定理:互易定理: ,等效电路简化为无,等效电路简化为无 源源 形等效电路:形等效电路: YY 1221 + + I1 I2 YY 1112 YY 2212 Y 12 1 U 2 U 电路1112章二端口网络33 同样地,由同样地,由H H参数方程:参数方程: 可构成如下图所示的含两个受控源的等效电可构成如下图所示的含两个受控源的等效电 路:路:

26、上述等效电路是晶体三极管的等效电上述等效电路是晶体三极管的等效电 路,此电路的优点是参数便于测量,路,此电路的优点是参数便于测量, 物理意义明确:物理意义明确: 2221212 2121111 UHIHI UHIHU I1 + + H11 H V 122 + I2 H22H I 21 1 1 U 2 U 电路1112章二端口网络34 是三极管的输入电阻;是三极管的输入电阻; 是三极管的反向电压传输系数;是三极管的反向电压传输系数; 是三极管的电流放大系数;是三极管的电流放大系数; 是三极管的输出导纳。是三极管的输出导纳。 H11 H12 H21 H22 电路1112章二端口网络35 11-5

27、11-5 二端口网络的联接二端口网络的联接 对于一个复杂的二端口网络来说,可以把它对于一个复杂的二端口网络来说,可以把它 看成是若干相对简单的二端口网络按某种方看成是若干相对简单的二端口网络按某种方 式联接而成,二端口网络可以按多种不同的式联接而成,二端口网络可以按多种不同的 方式相互联接。其主要联接方式有:级联、方式相互联接。其主要联接方式有:级联、 串联、并联;还有串、并联等。串联、并联;还有串、并联等。 1.1.两个二端口网络两个二端口网络N N1 1和和N N2 2级联;设相应的级联;设相应的A A参参 数分别为:数分别为: A AB CD A AB CD 电路1112章二端口网络36

28、 (a)(a)级联级联 11 UU II 11 I2 2 U N1 II 22 1 U 22 UU N2 I1 根据根据A A参数方程,有参数方程,有 2 2 1 1 I U A I U 2 2 1 1 I U A I U 由图:由图: 11 UU II 11 II 22 22 UU II 21 12 UU 得:得: 2 2 2 2 2 2 1 1 2 2 1 1 1 1 I U A I U AA I U AA I U A I U A I U I U 电路1112章二端口网络37 故得二端口网络级联时故得二端口网络级联时A A参数的公式:参数的公式: AA A 2.2.两个二端口网络两个二端口

29、网络N N1 1和和N N2 2并联;设相应的并联;设相应的Y Y 参数分别为:参数分别为: Y YY YY 1112 2122 Y YY YY 1112 2122 由图:由图: 111 UUU III 111 III 222 222 UUU 电路1112章二端口网络38 III 111 I1 I2 N1 III 222 N2 I1 I2 (b)(b)并联并联 显然,有显然,有 YYY 2 U 2 U 1 U 1 U 1 U 2 U 电路1112章二端口网络39 3.3.两个二端口网络两个二端口网络N N1 1和和N N2 2串联;设相应的串联;设相应的Z Z 参数分别为:参数分别为: 同理可

30、得:同理可得: Z ZZ ZZ 1112 2122 Z ZZ ZZ 1112 2122 I1 I2 N1 II 22 N2 I1 222 UUU 111 UUU I1 I2 ZZZ 2 U 1 U 2 U 1 U 电路1112章二端口网络40 4.4.混联混联(a.(a.串、并联串、并联) )的情况:的情况: HHH 对偶地,对偶地,(b.(b.并、串联并、串联) )的情况:的情况:GGG I1 I2 N1 III 222 N2 I1 I2 111 UUU I1 2 U 2 U 2 U 1 U 1 U 电路1112章二端口网络41 12 12 简单非线性电阻电路简单非线性电阻电路 12-1 1

31、2-1 解析法解析法 12-2 12-2 图解法图解法 12-4 12-4 小信号分析法小信号分析法 电路1112章二端口网络42 严格地讲,实际电路都是非线性的严格地讲,实际电路都是非线性的 ,只不过可以近似地将它们看成是线性,只不过可以近似地将它们看成是线性 电路来分析。不会产生太大的误差。当电路来分析。不会产生太大的误差。当 某一个元件的非线性特征不能被近似或某一个元件的非线性特征不能被近似或 忽略,否则,就无法解释电路所发生的忽略,否则,就无法解释电路所发生的 物理现象。这时,就不能再用线性电路物理现象。这时,就不能再用线性电路 的方法来分析了。的方法来分析了。 分析非线性电路要比线性

32、电路复杂分析非线性电路要比线性电路复杂 得多,所求的解也不一定是唯一的。本得多,所求的解也不一定是唯一的。本 章只讨论简单非线性电阻电路的分析。章只讨论简单非线性电阻电路的分析。 电路1112章二端口网络43 12-1 12-1 解析法解析法 当电路中的非线性电阻元件的当电路中的非线性电阻元件的VCRVCR的数学的数学 函数式已知时,可使用解析法。函数式已知时,可使用解析法。 例:试求电路中的例:试求电路中的v v和和i i。非线性电阻。非线性电阻R R的的 VCRVCR为为 。 R R31 R22 R12 VU S 8u i A5 . 1 2 uui 解:由戴维南定理解:由戴维南定理 uiR

33、U RU OOC OOC 2,4 V 得:得: 与非线性电阻的与非线性电阻的VCRVCR联立,解非线性方程,联立,解非线性方程, 电路1112章二端口网络44 一般地讲,非线性电路的解析法,最后一般地讲,非线性电路的解析法,最后 总会归结到非线性方程的求解问题。总会归结到非线性方程的求解问题。 代入非线性电阻的代入非线性电阻的VCRVCR,得两组解:,得两组解: 5 . 0 1 2, 1 u A5 . 1 V1 1 1 i u A25. 2 V5 . 0 2 2 i u 得:得: 电路1112章二端口网络45 12-2 12-2 图解法图解法 工程上,往往并不知道非线性元件精确的工程上,往往并

34、不知道非线性元件精确的 VCRVCR,而已知其,而已知其v-iv-i曲线。这时,常用作图曲线。这时,常用作图 的方法来确定电流或电压。当然,这种方的方法来确定电流或电压。当然,这种方 法精度较低。法精度较低。 12-2-1 12-2-1 负载线法。负载线法。 R RO OC U i ),( 00 IUQ 0 U I0 i Q Q称为称为( (静态静态) )工作点。那条直线称为负载线。工作点。那条直线称为负载线。 u u 电路1112章二端口网络46 12-2-2 12-2-2 非线性电阻的串联、并联和混联非线性电阻的串联、并联和混联 i R 1 R2 R 1 R2 ii 1 i2 i R1R2

35、 R i R1R i 1 i 2 i R2 u u 1 u 2 u 2 u u uu 1 u 电路1112章二端口网络47 12-4 12-4 小信号分析法小信号分析法 小信号分析法又称局部线性化近似法。是电子小信号分析法又称局部线性化近似法。是电子 电路分析非线性电路的重要方法。电路分析非线性电路的重要方法。 图中图中US为直流电压源为直流电压源( (常称为常称为偏置偏置),),uS(t)为时变为时变 电压源电压源( (信号源信号源) )。且。且 uS(t) US 。R为非线性为非线性 电阻,其电阻,其VCRVCR为为i = f (u), ,如图中的曲线所示。如图中的曲线所示。 i t ( ) R RS i I0 )( 0 Uf S U )(tu S )(tu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论