2013中考数学分类解析专题03:函数问题_第1页
2013中考数学分类解析专题03:函数问题_第2页
2013中考数学分类解析专题03:函数问题_第3页
2013中考数学分类解析专题03:函数问题_第4页
2013中考数学分类解析专题03:函数问题_第5页
已阅读5页,还剩98页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题:函数问题一、选择题1. (2013年北京市4分) 如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是【 】2. (2013年天津市3分)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升

2、;矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=SABP;当点P与点A重合时,y=0其中,符合图中所示函数关系的问题情境的个数为【】A0 B1 C2 D33. (2013年重庆市A4分)一次函数、二次函数和反比例函数在同一直角坐标系中图象如图,A点为(2,0)。则下列结论中,正确的是【 】ABCD4. (2013年湖南长沙3分)二次函数y=ax2+bx+c的图象中如图所示,则下列关系式错误的是【 】Aa0 Bc0 Cb24ac0 Da+b+c0故选D。5. 如图所示,半径为1的圆和边长为3的

3、正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为【 】6. (2013年湖南益阳4分)已知一次函数y=x2,当函数值y0时,自变量x的取值范围在数轴上表示正确的是【 】7. (2013年湖南岳阳3分)二次函数的图象如图所示,对于下列结论:a0;b0;c0;b+2a=0;a+b+c0其中正确的个数是【 】A1个 B2个 C3个 D4个8. (2013年湖南张家界3分)若正比例函数y=mx(m0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是【 】9. (2013年湖南株洲3分)二次函数的图象如图

4、所示,则m的值是【 】A8 B8 C8 D610. 一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是【 】11. 如下图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图像大致是【 】12. 如下图所示,已知等腰梯形ABCD,ADBC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x

5、的函数图象大致是【 】13. 小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示下列说法:小亮先到达青少年宫;小亮的速度是小文速度的2.5倍;a=24;b=480其中正确的是【 】A B C Db=20001520=480,故b=480正确。综上所述,正确的有:。故选B。14. 如图,二次函数y=ax2+bx+c(a0)的图象的顶点在第一象限,且过点(0,1)和(1,0)下列结论:ab0,b24a,0a+b+c2,0b1,当x1时,y0,其中正确结论的个数是【 】A5个 B4

6、个 C3个 D2个15. 如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:当x3时,y0;3a+b0;3n4中,正确的是【 】AB C D16. 如图1,在RtABC中,ACB=900,点P以每秒1cm的速度从点A出发,沿折线ACCB运动,到点B停止。过点P作PDAB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示。当点P运动5秒时,PD的长是【 】A1.5cm B1.2cm C1.8cm D2cm17. 如图,正方形ABCD的边长为4,P为正方形边上一动点,沿ADCB

7、A 的路径匀速移动,设P点经过的路径长为x,APD的面积是y,则下列图象能大致反映y与x的函数关系的是【 】18. 教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10,加热到100,停止加热,水温开始下降,此时水温()与开机后用时(min)成反比例关系直至水温降至30,饮水机关机饮水机关机后即刻自动开机,重复上述自动程序若在水温为30时,接通电源后,水温y()和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50的水,则接通电源的时间可以是当天上午的【 】A7:20 B7:30 C7:45 D7:5019. 如图,二次函数(a0)的图象与x轴交于A、B两点,

8、与y轴交于C点,且对称轴为x=1,点B坐标为(1,0)则下面的四个结论:2a+b=0;4a2bc0;ac0;当y0时,x1或x2其中正确的个数是【 】A1 B2 C3 D420. 已知b0时,二次函数的图象如下列四个图之一所示根据图象分析,a的值等于【 】A2 B1 C1 D221. 如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿ABC的方向运动,到达点C时停止设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为【 】22. 如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿B

9、C,CD运动,到点C,D时停止运动,设运动时间为t(s),OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为【 】23. 如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.下列判断: 当x2时,M=y2; 当x0时,x值越大,M值越大;使得M大于4的x值不存在;若M=2,则x= 1 . 其中正确的有 【 】 A1个 B2个 C 3个 D4个24. 如图,在平面直角坐标系中,AOB=90,OAB=30,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于

10、m,n的关系正确的是【 】A. m=3n B. C. D. 25. 如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BEEDDC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s若P,Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2)已知y与t的函数图象如图2,则下列结论错误的是【 】AAE=6cm B C当0t10时, D当t=12s时,PBQ是等腰三角形26. 二次函数图象上部分点的坐标满足下表:则该函数图象的顶点坐标为【 】A(3,3) B(2,2) C(1,3) D(0,6)27. 下列图形中,阴影部分面积最大的是【 】28. 如图所示

11、,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b24ac0;(2)c1;(3)2ab0;(4)a+b+c0,其中错误的有【 】A1个 B2个 C3个 D4个29. 如图,直线y=kx+b交坐标轴于A(2,0),B(0,3)两点,则不等式kx+b0的解集是【 】Ax3 B2x3 Cx2 Dx230. 二次函数y=ax2+bx+c(a0)的图象如图如图所示,若M=a+bc,N=4a2b+c,P=2ab则M,N,P中,值小于0的数有【 】A3个 B2个 C1个 D0个故选A。31. 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y

12、与时间x的关系的大致图象是【 】32. 已知k10k2,则函数和 的图象大致是【 】33. 如图,梯形ABCD中,ABDC,DEAB,CFAB,且AE = EF = FB = 5,DE = 12,动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y = SEPF,则y与t的函数图象大致是【 】34. 在二次函数的图像中,若随的增大而增大,则的取值范围是【 】(A) (B) (C) (D)【答案】故选C。35. 若二次函数 (a0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x10 Bb24ac0 Cx1x0x2Da(x0x1)(

13、 x0x2)036. 已知两点均在抛物线上,点是该抛物线的顶点,若,则的取值范围是【 】A B C D37. 如图,已知第一象限内的点A在反比例函数上,第二象限的点B在反比例函数上,且OAOB,则k的值为【 】A3 B6 C4 D38. 如图,正比例函数与反比例函数相交于点E(,2),若,则的取值范围在数轴上表示正确的是【 】二、填空题1. 若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n= 【答案】9。2. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的

14、时间,y1表示乌龟所行的路程,y2表示兔子所行的路程)有下列说法:“龟兔再次赛跑”的路程为1000米;兔子和乌龟同时从起点出发;乌龟在途中休息了10分钟;兔子在途中750米处追上乌龟其中正确的说法是 (把你认为正确说法的序号都填上)y1=y2=750米,即兔子在途中750米处追上乌龟,故正确。综上可得正确。3. 如图,点P是反比例函数图象上的点,PA垂直x轴于点A(1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=。(1)k的值是 ;(2)若M(a,b)是该反比例函数图象上的点,且满足MBAABC,则a的取值范围是 。 4. (2013年江苏常州2分)在平面直角坐标系xO

15、y中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OAOB,OB=OA,则k= 5. (2013年江苏宿迁3分)在平面直角坐标系xOy中,一次函数与反比例函数的图象交点的横坐标为x0若kx0k+1,则整数k的值是 6. (2013年江苏盐城3分)如图,在以点O为原点的直角坐标系中,一次函数的图象与x轴交于A、与y轴交于点B,点C在直线AB上,且OC=AB,反比例函数的图象经过点C,则所有可能的k值为 .7. (2013年贵州毕节5分)一次函数的图象经过(1,2),则反比例函数的图象经过点(2,)8. (2013年贵州贵阳4分)已知二次函数y

16、=x2+2mx+2,当x2时,y的值随x值的增大而增大,则实数m的取值范围是 9. (2013年贵州遵义4分)如图,已知直线与双曲线(k0)交于A、B两点,点B的坐标为,C为双曲线(k0)上一点,且在第一象限内,若AOC的面积为6,则点C的坐标为 10. (2013年广东茂名3分)如图,三个正比例函数的图象分别对应表达式:y=ax,y=bx,y=cx,将a,b,c从小到大排列并用“”连接为 【答案】acb。11. (2013年山西省3分)如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DEAB

17、,点E到直线AB的距离为7m,则DE的长为 m. 三、解答题1. (2013年天津市10分)已知抛物线 a0)的对称轴是直线l,顶点为点M若自变量x和函数值y1的部分对应值如下表所示:(1)求y1与x之间的函数关系式;(2)若经过点T(0,t)作垂直于y轴的直线l,A为直线l上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2)求y2与x之间的函数关系式;当x取任意实数时,若对于同一个x,有y1y2恒成立,求t的取值范围2. (2013年上海市12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x轴正半轴上的点B,AO=OB=2,AOB=12

18、00(1)求这条抛物线的表达式;(2)连接OM,求AOM的大小;(3)如果点C在x轴上,且ABC与AOM相似,求点C的坐标 3. (2013年重庆市A12分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(3,0)。(1)求点B的坐标;(2)已知,C为抛物线与y轴的交点。若点P在抛物线上,且,求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值。4. (2013年湖南怀化10分)已知函数(是常数)(1)若该函数的图像与轴只有一个交点,求的值;(2)若点在某反比例函数的图像上,要使该反比例函数和二次函数都是随的增大而增大,求应满足的条件以及

19、的取值范围;(3)设抛物线与轴交于两点,且,在轴上,是否存在点P,使ABP是直角三角形?若存在,求出点P及ABP的面积;若不存在,请说明理由。5. (2013年湖南湘西8分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数的图象有一个交点A(m,2)(1)求m的值;(2)求正比例函数y=kx的解析式;(3)试判断点B(2, 3)是否在正比例函数图象上,并说明理由6. (2013年湖南永州10分)如图,已知二次函数(m0)的图象与x轴交于A、B两点(1)写出A、B两点的坐标(坐标用m表示);(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;(3)设以AB为

20、直径的M与y轴交于C、D两点,求CD的长7. (2013年湖北黄冈12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润(元)与国内销售数量(千件)的关系为:若在国外销售,平均每件产品的利润(元)与国外的销售数量t(千件)的关系为:(1)用的代数式表示t为:t= ;当04时,与的函数关系式为:= ;当4 时,=100;(2)求每年该公司销售这种健身产品的总利润W(千元)与国内的销售数量(千件)的函数关系式,并指出的取值范围;(3)该公司每年国内、国外的销量各为多少时,可使公司每年的总利润最大?最大值为

21、多少?可。8. (2013年湖北荆州12分)如图,某个体户购进一批时令水果,20天销售完毕他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示(1)直接写出y与x之间的函数关系式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?9. (2013年湖北随州12分)某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品

22、加工已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35x50时,y与x之间的函数关系式为y=200.2x;当50x70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件物价部门规定这两种产品的销售单价之和为90元(1)当50x70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式(2)若公司第一年的年销售量利润(年销售利润=年销售收入生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二

23、年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50x70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和投资成本)不低于85万元请直接写出第二年乙种产品的销售单价m(元)的范围10. (2013年浙江金华、丽水10分)如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作轴、轴的平行线与直线OA交于点C,E。(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造条形BCDE,设点D的坐标为(,),求,之间的关系式。11. (2013年浙江绍兴12分)在ABC中

24、,CAB=90,ADBC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上(1)如图1,AC:AB=1:2,EFCB,求证:EF=CD(2)如图2,AC:AB=1:,EFCE,求EF:EG的值12. (2013年浙江台州12分)如图1,已知直线与y轴交于点A,抛物线经过点A,其顶点为B,另一抛物线的顶点为D,两抛物线相交于点C(1)求点B的坐标,并说明点D在直线的理由;(2)设交点C的横坐标为m交点C的纵坐标可以表示为: 或 ,由此请进一步探究m关于h的函数关系式;如图2,若,求m的值【答案】解:(1)当x=0时候,A(0,2)。把A(0,2)代入,得1+k=2,k=1。B(1,1)。

25、13. (2013年山东滨州12分)根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)如图,过原点的直线l3向上的方向与x轴的正方向所成的角为300求直线l3的函数表达式;把直线l3绕原点O按逆时针方向旋转900得到的直线l4,求直线l4的函数表达式(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线垂直的直线l5的函数表达式14. (2013年山东东营12分)已知抛物线的顶点A(2,0),与y轴的交点为B(0,1)(1)求抛

26、物线的解析式;(2)在对称轴右侧的抛物线上找出一点C,使以BC为直径的圆经过抛物线的顶点A并求出点C的坐标以及此时圆的圆心P点的坐标(3)在(2)的基础上,设直线x=t(0t10)与抛物线交于点N,当t为何值时,BCN的面积最大,并求出最大值的横坐标相同,所以MN就等于点N的纵坐标减去点M的纵坐标,从而形成关于MN长的二次函数解析式,利用二次函数的最值求解。15. (2013年山东聊城12分)已知ABC中,边BC的长与BC边上的高的和为20(1)写出ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,ABC的面积最大?最大面积是多少?(3)当ABC面积最

27、大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明16. (2013年山东日照10分)一汽车租赁公司拥有某种型号的汽车100辆公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元用含x(x3000)的代数式填表:(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多

28、少元17. (2013年山东威海12分)如图,在平面直角坐标系中,直线与直线y=x交于点A,点B在直线上,BOA=90抛物线过点A,O,B,顶点为点E(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FEx轴,交直线AB于点F,连接OD,CF,CF交x轴于点M试判断OD与CF是否平行,并说明理由18. (2013年山东潍坊12分)为了改善市民的生活环境,我是在某河滨空地处修建一个如图所示的休闲文化广场.在RtABC内修建矩形水池DEFG,使顶点D、E在斜边AB上,F、G分别在直角边BC、AC上;又分别以

29、AB、BC、AC为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米,BAC=600.设EF=x米,DE=y米.(1)求y与x之间的函数解析式;(2)当x为何值时,矩形DEFG的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当x为何值时,矩形DEFG的面积等于两弯新月面积的?19. (2013年山东烟台12分)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(,0),以OC为直径作半圆,圆心为D(1)求二次函数的解析式;(2)求证:直线BE是D的切线;

30、(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MNBE交x轴与点N,连结PM,PN,设CM的长为t,PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由 20. (2013年山东淄博9分)矩形纸片ABCD中,AB=5,AD=4(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁

31、剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上)21. (2013年江苏淮安12分)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式

32、;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值22. 已知二次函数 (a、m为常数,且a0)。(1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;(2)设该函数的图像的顶点为C,与x轴交于A、B两点,与y轴交于点D。 当ABC的面积等于1时,求a的值: 当ABC的面积与ABD的面积相等时,求m的值。 23.如图,直线与抛物线相交于A,B两点,与x轴正半轴相交于点D,与y轴相交于点C,设OCD的面积为S,且。(1)求b的值;(2)求证:点在反比例函数的图象上;(3)求证:。24. 如图,已知抛物线(b,c是常数,且c0)与x轴分别交于点A,B(点A位

33、于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(1,0)(1)b ,点B的横坐标为 (上述结果均用含c的代数式表示);(2)连接BC,过点A作直线AEBC,与抛物线交于点E点D是x轴上一点,其坐标为(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得PBC的面积为S 求S的取值范围;若PBC的面积S为整数,则这样的PBC共有 个 25. 已知:关于x的二次函数(a0),点A(n,y1)、B(n+1,y2)、C(n+2,y3)都在这个二次函数的图象上,其中n为正整数(1)y1=y2,请说明a必为奇数;

34、(2)设a=11,求使y1y2y3成立的所有n的值; (3)对于给定的正实数a,是否存在n,使ABC是以AC为底边的等腰三角形?如果存在,求n的值(用含a的代数式表示);如果不存在,请说明理由26. 为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:(1)若甲用户3月份的用气量为60m3,则应缴费 元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份

35、用气量),共缴费455元,乙用户2、3月份的用气量各是多少? 27. 如图,已知抛物线与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3)(1)求抛物线的解析式;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得 PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标28. 如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1)(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BDCA交抛物线于点D,连接BC、

36、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与CBD相似?若存在请求出P点的坐标;若不存在,请说明理由D点坐标为(2,3)。如图所示,过点D作DNx轴于点N,29. 某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元(1)根据图象,求y与x之间的函数关系式;(2)求

37、甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?【答案】解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得30. 已知抛物线y1=ax2+bx+c(a0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2(1)求抛物线的解析式;(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a0)及直线y2=

38、x+1的图象, 并根据图象,直接写出使得y1y2的x的取值范围;(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P在抛物线上,当SPAB6时,求点P的横坐标x的取值范围根据图象,可知使得y1y2的x的取值范围为1x2。31. 如图,AC是O的直径,P是O外一点,连结PC交O于B,连结PA、AB,且满足PC=50,PA=30, PB=18(1)求证:PABPCA;(2)求证:AP是O的切线32.如图,已知抛物线y=ax2+bx+c(a0)的顶点坐标为(4,),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边)(1)求抛物线的解析式及A,B两点

39、的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)在以AB为直径的M相切于点E,CE交x轴于点D,求直线CE的解析式33. 如图,已知抛物线经过点A(0,3),B(3,0),C(4,3)(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)(3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积等于平行四边形的面积,列式进行计算即可得解。34. 已知抛物线过点A(1,0),顶点为B,且抛物

40、线不经过第三象限。(1)使用a、c表示b; (2)判断点B所在象限,并说明理由;(3)若直线经过点B,且于该抛物线交于另一点C(),求当x1时y1的取值范围。35. 如图,已知抛物线y=2x22与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(1)写出以A,B,C为顶点的三角形面积;(2)过点E(0,6)且与x轴平行的直线l1与抛物线相交于M、N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点做平行四边形,当平行四边形的面积为8时,求出点P的坐标;(3)过点D(m,0)(其中m1)且与x轴垂直的直线l2上有一点Q(点Q在第一象限),使得以Q,D,B为顶点的三角形和以

41、B,C,O为顶点的三角形相似,求线段QD的长(用含m的代数式表示)36. 如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BCAC,抛物线经过C、B两点,与x轴的另一交点为D。(1)点B的坐标为( , ),抛物线的表达式为 .(2)如图2,求证:BD/AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交C于点P,求AP的长。37. 周末,小明骑自行车从家里出发到野外郊游从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩小明离家小时50分钟,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论