




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题1.5 立体几何考向一 三视图与几何体的面积、体积【高考改编回顾基础】1【空间几何体的直观图和面积计算】【2017全国卷改编】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为_ 【答案】12【解析】该几何体为一个三棱柱和一个三棱锥的组合体,其直观图如图所示,各个面中有两个全等的梯形,其面积之和为2212. 2. 【三视图与空间几何体的体积】【2017全国卷改编】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,
2、则该几何体的体积为_【答案】63【解析】3. 【空间几何体的体积】【2017课标3,改编】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 .【答案】【解析】 【命题预测看准方向】1.空间几何体的三视图成为近几年高考的必考点,单独考查三视图的逐渐减少,主要考查由三视图求原几何体的面积、体积,主要以选择题、填空题的形式考查.2.对柱体、锥体、台体表面积、体积及球与多面体的切接问题中的有关几何体的表面积、体积的考查又是高考的一个热点,难度不大,主要以选择题、填空题的形式考查.3.2018年应注意抓住考查的主要题目类型进行训练,重点有三个:一是三视图中的几何体的形状
3、及面积、体积;二是求柱体、锥体、台体及球的表面积、体积;三是求球与多面体的相切、接问题中的有关几何体的表面积、体积.【典例分析提升能力】【例1】17世纪日本数学家们对于数学关于体积方法的问题还不了解,他们将体积公式“vkd3”中的常数k称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,d为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式vkd3,其中,在等边圆柱中,d表示底面圆的直径;在正方体中,d表示棱长假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k1,k2,k3,那么,k1k2k3()a. 1 b. 2
4、c. 13 d. 1【答案】d【解析】球中, ; 等边圆柱中, ; 正方体中, ;所以.故选d.【趁热打铁】将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为()a. b. c. d. 【答案】b【解析】【例2】【2018届河南省郑州市第一次模拟】刍薨(),中国古代算术中的一种几何形体,九章算术中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”,如图,为一刍薨的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)需要的茅草面积至少为( )a.
5、 24 b. c. 64 d. 【答案】b【趁热打铁】【2018届湖北省稳派教育高三上第二次联考】已知一个几何体的三视图如图所示,则该几何体的体积为( )a. b. c. d. 【答案】a【解析】由三视图可得,该几何体为右侧的一个半圆锥和左侧的一个三棱锥拼接而成。由三视图中的数据可得其体积为.选a.【方法总结全面提升】1.三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.2.空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴露”在外的所有面的面积,在计算时要注意区分“是
6、求侧面积还是求表面积”.多面体的表面积就是其所有面的面积之和,旋转体的表面积除了球之外,都是其侧面积和底面面积之和.3. 等体积法也称等积转化法或等积变形法,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决与锥体有关的问题,特别是三棱锥的体积.【规范示例避免陷阱】【典例】【2016全国卷改编】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径若该几何体的体积是,则它的表面积是_ 【规范解答】该几何体为一个球去掉八分之一,设球的半径为r,则r3,解得r2,故该几何体的表面积为4222217.【反思提高】在由空间几何体的三视图确定几何体的形状时,先根据俯视图确定几何体的
7、底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,特别注意由各视图中观察者与几何体的相对位置与图中的虚实线来确定几何体的形状,最后根据三视图“长对正、高平齐、宽相等”的关系,确定轮廓线的各个方向的尺寸.【误区警示】1.求几何体体积问题,可以多角度、多方位地考虑问题.在求三棱锥体积的过程中,等体积转化法是常用的方法,转换底面的原则是使其高易求,常把底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的思想,将不规则几何体变为规则几何体,易于求解.考向二 球与多面体的切接问题【高考改编回顾基础】1.【球与多面体的切接、面积与体积】【20
8、17天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .【答案】 2【球与多面体的切接、面积与体积】【2017课标1,文16】已知三棱锥s-abc的所有顶点都在球o的球面上,sc是球o的直径若平面sca平面scb,sa=ac,sb=bc,三棱锥s-abc的体积为9,则球o的表面积为_【答案】【解析】取的中点,连接因为所以因为平面平面所以平面设所以,所以球的表面积为3. 【球与旋转体的切接、面积与体积】【2017江苏,6】 如图,在圆柱内有一个球,该球与圆柱的上、下面及母线均相切.记圆柱的体积为,球的体积为,则的值是 .oo1o2(第6题) 【答案
9、】 【命题预测看准方向】球与多面体的切、接问题中的有关几何体的表面积、体积计算,往往与三视图结合考查,一般为选择题或填空题,难度以低、中档为主.【典例分析提升能力】【例1】已知是球上的点, , , ,则球的表面积等于_【答案】【解析】【趁热打铁】如图,一张纸的长、宽分别为2a,2a,a,b,c,d分别是其四条边的中点,现将其沿图中虚线折起,使得p1,p2,p3,p4四点重合为一点p,从而得到一个多面体,关于该多面体的下列命题,正确的是_(写出所有正确命题的序号).该多面体是三棱锥;平面bad平面bcd;平面bac平面acd;该多面体外接球的表面积为5a2.【答案】【解析】将平面图形沿图中虚线折
10、起.使得p1,p2,p3,p4四点重合为一点p,从而得到一个多面体,则由于(a)2(a)24a2,该多面体是以a,b,c,d为顶点的三棱锥,正确.apbp,apcp,bpcpp,bp,cp平面bcd,ap平面bcd,ap平面bad,平面bad平面bcd,正确.与同理,可得平面bac平面acd,正确.该多面体外接球的半径为a,表面积为5a2,正确.【例2】【2018届江西省莲塘一中、临川二中高三上学期第一次联考】已知三棱锥的各顶点在一个表面积为的球面上,球心在上, 平面, ,则三棱锥的体积为_.【答案】【解析】如图所示,设球的半径为r,则,解得r=1.oc2+oa2=2=ac2,ocoa.球心o
11、在ab上,so平面abc,则三棱锥的底面积: ,三棱锥的体积: .故答案为: .【趁热打铁】【2018届贵州省遵义航天高级中学高三第五次模拟】如图1,在平面abcd中,ab=ad=cd=1,bd=, ,将其对角线bd折成四面体,如图2,使平面平面bcd,若四面体的顶点在同一球面上,则该球的体积为_【答案】【解析】因为bd中点o到距离为 ,o到距离为 ,所以 ,体积为 【例3】有人由“追求”联想到“锥、球”并构造了一道名为追求2017的题目,请你解答此题:球o的球心为点o,球o内切于底面半径为、高为3的圆锥,三棱锥vabc内接于球o,已知oaob,acbc,则三棱锥vabc的体积的最大值为_【答
12、案】 【解析】圆锥的母线长为 =2,设球o的半径为r,则 ,解得r=1oaob,oa=ob=1,ab=,acbc,c在以ab为直径的圆上,平面oab平面abc,o到平面abc的距离为,故v到平面abc的最大距离为又c到ab的最大距离为,三棱锥vabc的体积的最大值为 =故答案为: 【趁热打铁】在封闭的直三棱柱abc-a1b1c1内有一个体积为v的球.若abbc,ab=6,bc=8,aa1=3,则v的最大值是()a.4b.92c.6d.323【答案】b【方法总结全面提升】1.与球有关的组合体问题,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合
13、适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径球的内接长方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长.2.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系3.球心与截面圆心的连线垂直圆面,其距离为d,常利用直角三角形建立量的关系,r2d2r2.【规范示例避免陷阱】【典例】如图,直三棱柱abca1b1c1的六个顶点都在半径为1的半球面上,abac,侧面bcc1b1是半球底面圆的内接正方
14、形,则侧面abb1a1的面积为() a2 b1 c. d.【规范解答】基本法根据题中给定条件寻求所求侧面边长与其他量之间关系由题意知,球心在侧面bcc1b1的中心o上,bc为截面圆的直径,bac90,abc的外接圆圆心n位于bc的中点,同理a1b1c1的外心m是b1c1的中点设正方形bcc1b1边长为x,rtomc1中,om,mc1,oc1r1(r为球的半径),221,即x,则abac1,s矩形abb1a11.速解法根据大圆的内接正方形寻求球半径与正方形边长的关系正方形bcc1b1所在的是大圆面,b1c2,b1c22bc2,bc,在rtabc中,abac1,sabb1a11.【反思提升】球心与
15、截面圆心的连线垂直圆面,其距离为d,常利用直角三角形建立量的关系,.【误区警示】(1)涉及球与棱柱、棱锥的相切、接问题时,一般先过球心及多面体中的特殊点(如接、切点或线)作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程组求解.(2)若球面上四点p,a,b,c构成的三条线段pa,pb,pc两两互相垂直,且一般把有关元素“补形”成为一个球内接长方体,根据求解.考向三 空间中的平行与垂直【高考改编回顾基础】1【两线垂直的判断】【2017全国卷改编】如图,四面体abcd中,a
16、bc是正三角形,adcd,则ac与bd的位置关系是_【答案】垂直【解析】取ac的中点o,连接do,bo.因为adcd,所以acdo.又由于abc是正三角形,所以acbo.从而ac平面dob,故acbd.2. 【两线平行的判断】【2017全国卷改编】如图,a,b为正方体的两个顶点,m,n,q为所在棱的中点,则直线ab与平面mnq的位置关系是_ 【答案】平行【解析】因为m,q分别为对应棱的中点,所以有abmq,又ab不在平面mnq内,所以ab平面mnq.3.【两平面垂直位置关系】【2017北京卷改编】如图,在三棱锥pabc中,paab,pabc,abbc,d为线段ac的中点,e为线段pc上一点,则
17、平面bde与平面pac的位置关系是_测试要点:两平面垂直位置关系【答案】垂直4.【面面位置关系、充要条件】【2016山东卷改编 已知直线a,b分别在两个不同的平面,内,则“直线a和直线b相交”是“平面和平面相交”的_条件 【答案】充分不必要【解析】当两个平面内的直线相交时,这两个平面有公共点,即两个平面相交;但当两个平面相交时,两个平面内的直线不一定有交点【命题预测看准方向】高考对空间点、线、面位置关系的考查主要有两种形式:一是对命题真假的判断,通常以选择题、填空题的形式考查,难度不大,也不是高考的热点;二是在解答题中考查平行、垂直关系的证明,常以柱体、锥体为载体,难度中档偏难,是高考的热点.
18、预计随着高考对能力要求的不断加强,今后对空间中平行、垂直关系及体积中的探索性问题的考查会逐渐升温.【典例分析提升能力】【例1】【2017江苏,15】 如图,在三棱锥a-bcd中,abad, bcbd, 平面abd平面bcd, 点e,f(e与a,d不重合)分别在棱ad,bd上,且efad.求证:(1)ef平面abc;(2)adac.【答案】(1)见解析(2)见解析【趁热打铁】已知四棱锥pabcd中,pd平面abcd,abcd是正方形,e是pa的中点 ()求证:pc平面ebd;()求证:平面pbc平面pcd.【答案】()见解析 ()见解析【解析】试题分析:(1)连,与交于,利用三角形的中位线,可得
19、线线平行,从而可得线面平行;(2)证明,即可证得平面平面试题解析:()连接ac交bd与o,连接eo, e、o分别为pa、ac的中点,eopc,pc平面ebd,eo平面ebdpc平面ebd()pd平面abcd, bc平面abcd,pdbc,abcd为正方形,bccd,pdcdd, pd、cd平面pcdbc平面pcd,又bc平面pbc,平面pbc平面pcd.【例2】在如图所示的几何体中,四边形cdef为正方形,四边形abcd为等腰梯形,abcd,ac=,ab=2bc=2,acfb.(1)求证:ac平面fbc;(2)求四面体f-bcd的体积;(3)线段ac上是否存在点m,使ea平面fdm?证明你的结
20、论. 【答案】(1)证明:见解析.(2)312. (3)线段ac上存在点m,使得ea平面fdm成立. (3)解:线段ac上存在点m,且m为ac中点时,有ea平面fdm.证明如下:连接ce,与df交于点n,取ac的中点m,连接mn,如图.因为四边形cdef为正方形,所以n为ce的中点.所以eamn.因为mn平面fdm,ea平面fdm,所以ea平面fdm.所以线段ac上存在点m,使得ea平面fdm成立. 【趁热打铁】如图,在直角梯形abcd中,abcd,adab,cd=2ab=4,ad=,e为cd的中点,将bce沿be折起,使得code,其中点o在线段de内.(1)求证:co平面abed;(2)求
21、ceo(记为)多大时,三棱锥c-aoe的体积最大?最大值为多少? 【答案】(1)证明:见解析.(2)当=4时,三棱锥c-aoe的体积最大,最大值为23.【解析】(1)证明:在直角梯形abcd中,cd=2ab,e为cd的中点,则ab=de.又abde,adab,知becd.在四棱锥c-abed中,bede,bece,cede=e,ce,de平面cde,则be平面cde.因为co平面cde,所以beco.又code,且be,de是平面abed内两条相交直线,故co平面abed.(2)解:由(1)知co平面abed,知三棱锥c-aoe的体积v=13saoeoc=1312oeadoc.由直角梯形abc
22、d中,cd=2ab=4,ad=2,ce=2,得三棱锥c-aoe中,oe=cecos =2cos ,oc=cesin =2sin ,v=23sin 223,当且仅当sin 2=1,0,2,即=4时取等号(此时oe=2de,o落在线段de内).故当=4时,三棱锥c-aoe的体积最大,最大值为23.【方法总结全面提升】1.要注意线线平行(垂直)、线面平行(垂直)与面面平行(垂直)的相互转化.在解决线线平行、线面平行问题时,若题目中已出现了中点,可考虑在图形中再取中点,构成中位线进行证明.2.要证明线面平行,先在平面内找一条直线与已知直线平行,或找一个经过已知直线与已知平面相交的平面,找出交线,证明两
23、线平行.3.要证明线线平行,可考虑公理4或转化为证明线面平行.4.要证明线面垂直可转化为证明线线垂直,应用线面垂直的判定定理与性质定理进行转化.5.判定面面平行的四个方法:(1)利用定义,即判断两个平面没有公共点;(2)利用面面平行的判定定理;(3)利用垂直于同一条直线的两平面平行;(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行.6.面面垂直的证明方法:(1)用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线;(2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角.7.从解题方法上说,由于线线平行(垂直)、线面平行(垂直)、面面平行(垂直)之间
24、可以相互转化,因此整个解题过程始终沿着线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转化途径进行.8.对命题条件的探索的三种途径:(1)先猜想后证明,即先察与尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)将几何问题转化为代数问题,探索出命题成立的条件.9.对命题结论的探索方法:从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.【规范示例避免陷阱】【典例】【2017课标ii,文18】如图,四棱锥中,侧面为等边三角形且垂直于底面 , (1)证明:直线平面;(2)若面积为,求四棱锥的体
25、积.【规范解答】【反思提升】(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直.(5)先利用线面平行说明点面距为定值,计算点面距时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点到平面的距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出【误区警示】在立体几何类解答题中,对于证明与计算过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定
26、要写考向四 立体几何中的向量方法【高考改编回顾基础】1【空间向量求异面直线角】【2017全国卷改编】已知直三棱柱abca1b1c1中,abc120,ab2,bccc11,则异面直线ab1与bc1所成角的余弦值为_ 【答案】 方法二:如图,将该直三棱柱补充成直四棱柱,其中cdab且cdab,则可得ab1dc1且ab1dc1,图中bc1d即为异面直线ab1与bc1所成的角或所成角的补角在bc1d中,bc1,dc1,bd,所以cosbc1d.故异面直线ab1与bc1所成角的余弦值为.2.【空间向量求二面角】【2015安徽卷改编】如图所示,在多面体a1b1d1dcba中,四边形aa1b1b,add1a
27、1,abcd均为正方形,e为b1d1的中点,过a1,d,e的平面交cd1于f,则二面角e a1d b1的余弦值为_ 【答案】【解析】因为四边形aa1b1b,add1a1,abcd均为正方形,所以aa1ab,aa1ad,abad,且aa1abad.以a为原点,分别以,为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标a(0,0,0),b(1,0,0),d(0,1,0),a1(0,0,1),b1(1,0,1),d1(0,1,1)因为e点为b1d1的中点,所以e点的坐标为(0.5,0.5,1)设面a1de的一个法向量n1(r1,s1,t1),(0.5,0.5,0),(0,1,1)
28、,由n1,n1,得r1,s1,t1应满足方程组令t11,可得n1(1,1,1)设面a1b1cd的一个法向量n2(r2,s2,t2),(1,0,0),(0,1,1),由此同理可得n2(0,1,1)结合图形知,二面角e a1d b1的余弦值为.【命题预测看准方向】立体几何问题是高考的必考内容,立体几何解答题,一般设2至3问,2问的较多,前一问较简单,最后一问难度较大,而选用向量法可以降低解题难度,但增加了计算量. 考查的主要题目类型,一是利用向量知识证明空间的平行与垂直;利用向量知识求线线角、线面角、二面角的大小;围绕此利用向量知识解决立体几何中的探索性问题有所升温.【典例分析提升能力】【例1】在
29、直三棱柱abc-a1b1c1中,abc=90,bc=2,cc1=4,点e在线段bb1上,且eb1=1,d,f,g分别为cc1,c1b1,c1a1的中点.求证:(1)b1d平面abd;(2)平面egf平面abd.【答案】见解析. (2)由(1)知,e(0,0,3),ga2,1,4,f(0,1,4),则eg=a2,1,1,ef=(0,1,1),b1deg=0+2-2=0,b1def=0+2-2=0,即b1deg,b1def,又egef=e,因此b1d平面egf.结合(1)可知平面egf平面abd.【趁热打铁】已知直三棱柱abc-a1b1c1中,acbc,d为ab的中点,ac=bc=bb1.(1)求
30、证:bc1ab1;(2)求证:bc1平面ca1d. 【答案】见解析.【解析】证明: 如图,以c1为原点,c1a1,c1b1,c1c所在直线分别为x轴、y轴、z轴建立空间直角坐标系.由ac=bc=bb1,设ac=2,则a(2,0,2),b(0,2,2),c(0,0,2),a1(2,0,0),b1(0,2,0),c1(0,0,0),d(1,1,2).(1)因为bc1=(0,-2,-2),ab1=(-2,2,-2),所以bc1ab1=0-4+4=0,因此bc1ab1,故bc1ab1.(2)证法一 由于ca1=(2,0,-2),cd=(1,1,0),若设bc1=xca1+ycd,则得2x+y=0,y=
31、-2,-2x=-2,解得x=1,y=-2,即bc1=ca1-2cd,所以bc1,ca1,cd是共面向量,又bc1平面ca1d,因此bc1平面ca1d.证法二 设平面ca1d的法向量为n=(x,y,z),则nca1=0,ncd=0,即(x,y,z)(2,0,-2)=0,(x,y,z)(1,1,0)=0,2x-2z=0,x+y=0.不妨令x=1,则y=-1,z=1,n=(1,-1,1).bc1=(0,-2,-2),bc1n=10+(-2)(-1)+(-2)1=0.bc1n.又bc1在平面ca1d外,bc1平面ca1d.【例2】【2017课标ii,理19】如图,四棱锥p-abcd中,侧面pad为等比
32、三角形且垂直于底面abcd, e是pd的中点。(1)证明:直线 平面pab;(2)点m在棱pc 上,且直线bm与底面abcd所成角为 ,求二面角的余弦值。【答案】(1)证明略;(2) 。【解析】试题解析:则,,,设则,因为bm与底面abcd所成的角为45,而是底面abcd的法向量,所以, ,即。又m在棱pc上,设,则 。【趁热打铁】【2018届河北省涞水波峰中学高三上学期联考】如图,在四棱锥中,底面是边长为的菱形, 平面, 是棱上的一个点, 为的中点.(1)证明: 平面;(2)求直线 与平面所成的的角的正弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)连接,取的中点,所以,所以平面
33、, 平面,所以平面平面,所以平面;(2)建立空间直角坐标系,求出平面的法向量,求得线面夹角的正弦值。试题解析:(1)证明:连接,设,取的中点,连接,在中,因为分别为的中点,所以,又平面,所以平面,同理,在中, 平面,因为平面,所以平面.(2)以为坐标原点,分别以所在的直线为轴,建立如图所示的空间直角坐标系,在等边三角形中,因为,所以,因此,且,设平面的一个法向量为,则,取,得,直线与平面所成的角为,则.【方法总结全面提升】1. 用向量方法证明空间线面位置关系的方法:设直线l1,l2的方向向量分别为a,b,平面,的法向量分别为e1,e2,a,b,c分别为平面内的相异且不共线的三点(其中l1与l2不重合,与不重合),则(1)l1l2ab存在实数,使b=a(a0);l1l2abab=0.(2)l1ae1存在实数,使e1=a(a0);l1ae1=0存在非零实数1,2,使a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025临时工劳动合同范本(新)
- 2025标准水产类采购合同
- 自发性细菌性腹膜炎的临床护理
- 外阴汗腺腺癌的临床护理
- 2025年长沙市某建筑工程有限公司合同违约纠纷案
- 陕西省考行测试卷及答案
- 肇庆市实验中学高中历史二:第课亚洲和美洲的经济区域集团化高效课堂教学设计
- 纺织品电子商务与应用考核试卷
- 石油批发企业品牌价值提升考核试卷
- 纸容器行业法律法规与标准制定考核试卷
- 2025年街道全面加强乡村治理工作实施方案
- 明股实债协议合同
- 2025“十五五”金融规划研究白皮书
- 9.2法律保障生活(教案) -2024-2025学年统编版道德与法治七年级下册
- 2025年江西上饶铅山城投控股集团有限公司招聘笔试参考题库含答案解析
- 《昭君出塞》课本剧剧本:感受历史深处的家国情怀
- 建筑工程结算审核现场踏勘
- 加油站防汛抗洪应急预案范本
- 融资岗专业考试题及答案
- 2025年高考物理模拟试卷1(贵州卷)及答案
- 胃癌课件完整版本
评论
0/150
提交评论