沪科版九年级数学下册《【教案】 圆心角、弧、弦、弦心距之间的关系》_第1页
沪科版九年级数学下册《【教案】 圆心角、弧、弦、弦心距之间的关系》_第2页
沪科版九年级数学下册《【教案】 圆心角、弧、弦、弦心距之间的关系》_第3页
沪科版九年级数学下册《【教案】 圆心角、弧、弦、弦心距之间的关系》_第4页
沪科版九年级数学下册《【教案】 圆心角、弧、弦、弦心距之间的关系》_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、沪科版九年级数学下册精编课件圆心角、弧、弦、弦心距之间的关系知识要点归纳1.圆不但是轴对称图形,而且也是中心对称图形,实际上圆绕圆心旋转任意一个角度,都能够与原来的图形重合。2.圆心角:顶点在圆心的角叫做圆心角。从圆心到弦的距离叫做弦心距。3.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。4.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。注意:要正确理解和使用圆心角定理及推论。(1)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件虽然圆心角相等,但所对的弧、弦、弦心距不一定相等

2、。如图,同心圆,虽然aob=cod,但abcd,而且abcd,弦心距也不相切。odcba(2)要结合图形深刻理解圆心角、弧、弦、弦心距这四个概念与“所对”一词的含义,从而正确运用上述关系。下面举四个错例:若o中,ac=db,则ce=fd,cea=dfb这两个结论都是错误,首先ce、fd不是弦,cea、bfd不是圆心角,就不可以用圆心角定理推论证明。1oceafbd(3)同一条弦对应两条弧,其中一条是优弧,一条是劣弧,同时在本定理和推论中的“弧”是指同为劣弧或优弧,一般选择劣弧。(4)在具体运用定理或推论解决问题时可根据需要,选择有关部分,比如“等弧所对的圆心角相等”,在“同圆中,相等的弦所对的

3、劣弧相等”等。5.1的弧:因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,我们把每一份这样的弧叫做1的弧。一般地,n的圆心角对着n的弧,n的弧对着n的圆心角,也就是说,圆心角的度数和它所对的弧的度数相等。注意:这里说的相等是指角的度数与弧的度数相等。而不是角与弧相等,在书写时要防止出现“aob=ab”之类的错误。因为角与弧是两个不能比较变量的概念。相等的弧一定是相同度数的弧,但相同度数的弧却不一定是相等的弧。6.圆中弧、圆心角、弦、弦心距的不等关系(1)在同圆或等圆中,如果弦不等,那么弦心距也就不等,大弦的弦心距较小,小弦的弦心距反而大,反之弦心距较小时,则弦较大。当弦为圆中

4、的最大弦(直径)时,弦心距缩小为零;当弦逐步缩小时,趋近于零时,弦心距逐步增大,趋近于半径。(2)在同圆或等圆中,如果弧不等,那么弧所对的弦、圆心角也不等,且大弧所对的圆心角较大,反之也成立。注意:不能认为大弧所对的弦也较大,只有当弧是劣弧时,这一命题才能成立,半圆对的弦最大,当弧为优弧时,弧越大,对的弦越短。7.辅助线方法小结:(1)有弦的中点时,常连弦心距,进而可利用垂径定理或圆心角、弦、弧、弦心距关系定理;另外,证明两弦相等也常作弦心距。(2)在计算弧的度数时,或有等弧的条件时,或证等弧时,常作弧所对的圆心角。(3)有弧的中点或证弧的中点时,常有以下几种引辅助线的方法:(i)连过弧中点的

5、半径;(ii)连等弧对的弦;(iii)作等弧所对的圆心角。2【典型例题】例1.已知:如图,在o中,弦ab、cd的延长线交于p点,po平分apc。求证:(1)abcd;(2)papcamb2po1dcn分析:要证明两弦相等,可利用弧、圆心角、弦心距之中的一种相等来证,由于已知角平分线po过圆心,利用弦心距相等可以解决。证明:(1)过o点作omab于m,oncd于npo平分apcomonabcd(在同圆中,相等的弦心距所对的弦相等)此题还有几种变式图形,道理是一样的。弦ab、dc的交点在圆上,即b、p、d三点重合。若po平分apc,求证:papc。aopc弦ab、cd交于p点(p点在圆内)po平分

6、apc,求证:abcd。aopdbc此题还可将题设与结论交换一下,即已知abcd,求证:po平分apc,证法与上面一样,利用弦心距等。(2)在pom和pon中,3omp=onpqam=ab,cn=cd,ab=cd1=2op=opdpomdpon(aas)pm=pn1122am=cnpm+am=pn+cn即papc例2.如图,在o中,ab2cd,那么()aocdba.ab2cdc.ab=2cdb.abab,2afabafcd2af2cd,即ab2cd4故选a。faeobcd解法二:1如图,作弦de=cd,连结ce,则de=cd=ce2q在dcde中,有cd+dece2cdceqab=2cd,ab

7、ceabce,ab2cdaobced例3.如图,cd为o的弦,ac=bd,oa、ob交cd于f、e。求证:oeofocfedab证法一:连结oc、odqoc=od,c=dqac=bd,coa=bod(等弧所对的圆心角相等)dcofddoe5oe=ofcofedabcm=md又qca=bd,am=mb证法二:过o点作omcd于n交o于maom=bom又qfno=eno=90,on=ondofndoenof=oeocfaendmb求证:ec=2ea例4.如图,o中ab是直径,coab,d是cd的中点,deab。cedaob分析在同圆中,要证ec=2ea,考虑分别求出ec和ea的度数,而弧的度数又等

8、于它们所对的圆心角的度数,则关键是求出coe、aoe的度数。证明:连结oe6:2oe,deo=30qed/ab,coabedcoqd是co中点qoe=oc,od=1ec=2eaeod=90-30=60ec的度数是60qeoa=deo=30ae的度数是30ecdaobob例如图,dabc是等边三角形,ab是o直径,ae=ef=fb,ce、cf交ab于m、n。求证:ammnnbcamnef解析一:5.7求得=,知am是直径ab的三等分之一,同理,bn也是ab的三分之一,由于e、f是半圆aeb的三等分点,故连结oe,知aoe=60,因而daoe也为等边三角形。所以,eab=cba,即ae/bc,则d

9、amedbmc,可am1bm2故问题得证。cameonfbeoa=180=60,ao=eo=a证法一:连结oe、,设等边abc的边长为2aqab为o直径,ae=ef=fb1eoa等于aeb的度数313daoe为等边三角形ae=ao=a又qeao=cba=60,ae/bcdamedbmcamaea1=bmbc2a2am1=ab3同理,bn1=ab321mn=ab-ab=ab33am=mn=nb解析二:连结oe,易知oe/ac,也可求得am,进而可求得am与半径的比。mo8证法二:如图,连结oe,设ac2a,则acab2oe2acam=aoe=60,ac/oe=,即=omoea1=amac2a2o

10、m+am3am2am2oa3故am1=ab3同理,bn1=ab3am=mn=nb解析三:要证ammnnb,即证am:mo2:1,故联想到三角形的重心性质,若能证明m是acg的重心,问题得证。(三角形的重心即为三角形三条中线的交点到顶点的距离等于交点到对边中点距离的2倍)cameonfbg证明三:连结ae,并延长交co的延长线于g设ac2a,则有aeoa(证法一中已证明aoe为等边三角形)acbc,aoobaocg,cabgao60,aoao9同理,nb=abaocaogocog,且agac2aaea,aeega即e为ag中点,o为cg中点m为acg的重心221am=ao=a=ab33313am

11、=mn=nb【模拟试题】一.选择题。1.在o与o中,若aob=aob中,则有()a.ab=abc.ababd.ab与ab的大小无法比较a.ab=2cd2.半径为4cm,120的圆心角所对的弦长为()a.5cmb.43cmc.6cmd.33cm3.在同圆或等圆中,如果圆心角boa等于另一个圆心角cod的2倍,则下列式子中能成立的是()b.ab2cdc.abonc.omonb.om=ond.无法确定6.如图,ab为o的直径,c、d是o上的两点,bac=20,ad=cd,则dac的度数是()10a.70dcaobb.45c.35d.301二.填空题。31.一条弦把圆分成1:两部分,则劣弧所对的圆心角

12、的度数为_。2.一条弦等于其圆的半径,则弦所对的优弧的度数为_。3.在半径为r的圆中,垂直平分半径的弦长等于_。4.在o中,弦cd与直径ab相交于e,且aec30,ae1cm,be5cm,那么弦cd的弦心距of_cm,弦cd的长为_cm。5.已知o的半径为5cm,过o内一已知点p的最短的弦长为8cm,则op_。6.已知a、b、c为o上三点,若ab、bc、ca度数之比为1:2:3,则aob_,boc_,coa_。7.已知o中,直径为10cm,ab是o的,则弦ab_,ab的弦4心距_。三.解答题。1.如图:已知,oa为o的半径,ac是弦,oboa并交ac延长线于b点,oa6,ob8,求ac的长。o

13、acb2.如图,dabc中,a=70,o在dabc的三边上所截得的弦长都相等,求boc的度数。11aobc3.已知:如图,在o中,弦abcd,且abcd于e,be7,ae3,ogab于g,求:og的长?cagebod4.已知:如图,ab=cd,oeab,ofcd,oef=25,求ofe的度数。bdefoac5.如图,c是o的直径ab上一点,过点c作弦de,使cdco,使ad的度数为40,求be的度数。dacobe6.如图:已知,o中,ab=bc=cd,ob、oc分别交ac、db于m、n。求证:domn是等腰三角形。12domncab7.如图,o中弦abcd,且ab与cd交于e。求证:deae。aceobd13【试题答案】一.选择题。1.d2.b3.d4.b5.a6.c二.填空题。1.902.3003.3r4.1,425.3cm6.60,120,1807.52,5222ac,ab=10三.解答题。1.过o点作odab于dad=1根据射影定理:oa2=adabad=36.,ac=7.22ab-ae=2eb2oef=25oadcb2.boc=125提示:o是dabc中b、c的角平分线交点。3.og2过o点作omcdab

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论