




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教小学四年级数学下册三角形的内角和教学案例及反思片段一:创设问题情境,引发思考师出示一张长方形的纸。 师:这是我们什么图形?它有什么特征? 生 1 :这是长方形,它有四条边四个直角。生 2 :老师我要给他补充一点,长方形的对边相等,四个角相等。师:我们把这四个角叫这个长方形的内角, 那你们知道长方形的内角和是多少度 吗?生 1 :我知道是 360 度,因为长方形的四个角都是 90 度,所以 90 乘 4 就等于360 度。师:你反应真快,计算速度也很快。 师:现在请你们把手里的长方形沿着对角线对折再剪开会怎样呢? 学生动手操作。生 1 :我把长方形沿着对角线剪开,得到了两个三角形而且都是直角
2、三角形。生 2 :我也得到了两个完全相同的直角三角形。师:其他同学也是这样的吗?(全班齐答:是)举起来互相看看。 师:谁能大胆猜想一下其中的一个三角形的内角和是多少度呢? 生 1 :我觉得是 90 度左右。生 2:根本不可能是 90 度左右, 直角三角形已经有一个角是 90 度了,还有两个 角不可能是几度吧。生 3 :我想可能是 180 度,因为我手里的这块三角板就是一个直角三角形,一个 角是 90度,另两个角是 60度和 30 度,加起来就是 180 度。生 4 :我也赞同他的猜想,我手里的三角板是等腰直角三角形两个角是45 度,加起来是 90 度,再加一个 90 度也是 180 度。生 5
3、 :老师,我猜是 180 度,我们把长方形平均分成了两个直角三角形,也就是 把 360 度平均分成了两份,那一份就是 180 度。猜想已经成为学生学习数学的一种重要方式,从心理学角度看,是一项思 维活动,是学生有方向的猜想与判断, 包含了理性的思考和直觉的推断; 从学生 的学习过程来看, 猜想是学生有效学习的良好准备。 学生一旦做出某种猜想, 他 就会把自己的思维与所学的的知识连在一起, 会急切地想知道自己的猜想是否正 确,于是就会主动的去探索新知识,这时的学习是发自内心的需求。 师:你们的猜想有一定的道理,那直角三角形的内角和到底是不是 180 度 呢?同学们能用什么方法来验证吗?片段二:动
4、手操作,验证猜想师:只有猜想没有行动,那只能是空想,同学们把你的猜想用行动证明出 来吧。在行动之前先想一想用什么方法来证明,想清楚了再动手操作。任何猜想都要经过验证,才能确定其普遍意义,猜想验证的过程也就是学 生主动参与数学知识的探索过程。 只有猜想没有验证, 那只能是空想, 把猜想与 验证紧密结合,才能让学生经历知识的形成过程。 学生独立思考后开始动手验证。在此环节我没有设计小组讨论交流的形式,因为每一个学生都有丰富的知 识体验和生活积累, 每一个学生都会有各自的思维方式和解决问题的策略, 所以 必须让学生先要有自己的思考才能有自己的思维, 如果一开始就一起交流, 那有 很多学生就会随波逐流
5、和别人一样的思维。 师巡视发现小部分学生还没有想到证明的方法。师:如果你还没有想到证明的方法,可以和你周围的同学交流一下。学生独立思考思考后,有的学生已有了自己的思考并有结果,有的学生也 许还没有自己的想法,这时再通过相互交流启发,这样的交流更有实效。 师:现在我们就一起来交流你是怎样验证直角三角形的内角和是 180 度。生 1 :我是用量的方法两个锐角分别是 52 度和 38 度,再加上 90 度正好是 180 度。生 2 :我怎么三个角量了以后加起来是 181 度?生 3 :我也是量的方法,加起来是 179 度。师:是啊,怎么不是正好 180 度呢?生 4 :那肯定是是有误差,老师原来说过
6、不同的尺用的材料之间有小误差, 量的时候也会有误差。师:从同学们的汇报来看, 虽然度数不同, 但测量的直角三角形的内角和的 度数都在 180 度左右,因为测量有误差,这是客观存在的,那有不用量的方法 来证明的吗?生 5 :我是想刚才一个长方形的内角和是 360 度,沿对角线剪开后,等于把 正方形平均分成了两份,也就是把 360 度平均分成两份,每份是 180 度,所以 直角三角形的内角和是 180 度。师:你真善于观察!生 6 :我是想有一个角是 90 度,那我就要证明另两个角和起来是不是 90 度, 所以我是用剪的方法, 把另两个角剪下来正好也拼成了一个直角, 所以直角三角 形的内角和是 1
7、80 度。师:你能在投影仪上展示给大家看看吗?(生 6 高兴地在投影仪上展示)生 7 :我的方法比他还好些。师:这么有自信呀,那请你上来说说为什么你的方法更好些。生 7 :他把三角形剪开了,破坏了原来的图形,我是用折的方法,把直角三 角形的两个锐角顶点折向直角顶点,发现这两个锐角拼成的角正好与直角重合, 说明这个直角三角形的内角和是两个 90 度,也就是 180 度。师:同学们,你们认为这方法怎么样?(学生边说好边自发的鼓起掌来,生7 蹦蹦跳跳地走下讲台)得到同学们的赞同比得到老师的表扬更自豪,我们的课堂上不仅需要老师 的评价,还应该有学生之间的评价。 师;通过折, 把直角三角形的两个锐角转化
8、成一个直角; 由拼把直角三角形 的两个锐角拼成一个直角; 还可以用两个相同直角三角形拼成一个长方形 (或正 方形),把直角三角形的内角和转化成求长方形的内角和再除以 2。这些实际上 都是数学研究中的一重要方法: 把新的知识转化成我们已经学过的旧知识。 (板 书:转化)谁能用一句话来概括我们的结论?生 1 :直角三角形的内角和是 180 度。(师板书)围绕着一个目标,通过量一量、剪一剪、拼一拼等方法来证明学生自己的 假设和猜想, 并且对自己的证明方法进行反思, 判断众多方法中哪些是能够让人 信服的,不能信服的证明方法漏洞在哪里。这样,学生获得的不仅是知识,而且 是一种学习技能、学习科学探究的方法
9、。 师:直角三角形仅仅是三角形中的一种特殊形态, 你能不能也用转化的方法 来证明其它三角形的内角和是多少度。生:能!师:每人从你准备的三角形中任选一个锐角三角形或钝角三角形, 标出三个 内角,再选择一种自己喜欢的方法来说三角形的内角和是多少。学生动手操作,师巡视辅导。师:谁能第一个来说说你是用什么方法证明三角形的内角和?生 1 ;我是用量的方法来证明的, 我的选择的锐角三角形, 三个角分别是 48 度、52 度、80 度,三个角加起来正好是 180 度。师:借助量角器帮忙,完全可以,其他同学还有不同的方法吗?生 2 :我是用折的办法,把钝角三角形的三个内角折向一点,三个内角正好 拼成一个平角,
10、所以钝角三角形的内角和是 180 度。师:你用折的方法,将钝角三角形的内角和转化成一个平角,很有创意!跟 他想得一样的同学举手。生 3 :我开始也想用折的方法,可是怎么也折不好,就用剪的方法把钝角三 角形的三个内角剪下来, 依次拼成一个平角, 证明钝角三角形的内角和就是 180 度。师:你折不出来, 是哪里出问题了呢?哪个也是用折的方法, 来当小老师教 教他。生 4 :老师我能教他,折的时候一定要先折中间的这个角,而且顶点要正好 对准它的底边,再折两边的两个角,不信你试试看。师:他说得这么仔细我们就一起来试试吧。学生动手操作。师:现在成功的人举手, 那我们是不是要谢谢他告诉我们这个好方法呀?量
11、、 折、拼的方法都有了,还有其他不同的方法吗?生 5 :我的方法跟他们的不同,因为刚才我们证明了直角三角形的内角和是180 度。我想能不能把其它的三角形也转化成直角三角形呢?于是, 我从这个锐 角三角形的一个顶点做一条高, 把它分成两个直角三角形, 这两个直角三角形的 内角和是 360 度。但是,锐角三角形的内角和不包括这两个直角 180 度,所以 去掉这两个直角 180 度,锐角三角形的内角和就是 180 度。师:这太让我们吃惊了! 你能把我们刚学到的知识马上用上, 能活学活用啊, 这真是了不起啊,老师都为你感到骄傲!师:这个方法也可以用来证明钝角三角形吗?生 6 :可以,我可以从这个钝角的
12、顶点向它的底边作一条高,也可以分成两 个直角三角形。师:老师是越来越佩服我们班的同学了,你们太了不起了!师:谁能用两句话来概括我们的结论?生 1 ;锐角三角形的内角和是 180 度,钝角三角形的内角和是 180 度。(师 板书)师:刚才我们得出直角三角形的内角和是 180 度,现在谁能把这两次的结 论合起来说一说?生 2 :三角形的内角和是 180 度。(师板书)师:今天通过我们全体同学的努力, 我们通过不同方法将三角形的三个内角 转化成我们熟悉的直角或平角,证明了三角形内角和是 180 度,这种转化方法 是我们学习数学的重要方法, 老师希望在以后的学习中, 大家也能够运用转化的 方法去探索研
13、究新的知识!送给学生一粒数学的种子,仅仅靠传授一些知识和技能是远远不够的,还应该重视数学思想方法的训练和培养,使学生形成数学思想、具备数学素养片段三:实践运用拓展延伸1、配玻璃“啪 ”地一声响起,学校花架上的一块玻璃突然被飞来的球击碎了,一下子围上了许多同学, 小明看着地上的碎玻璃着急地说: 是我不小心打碎的, 我想 赶紧去配一块,可是,玻璃已经被打碎,尺寸大小都不知道, 该怎么办?真急人! 同学小聪的眼睛盯上了其中的一快玻璃,高兴地说: “我有办法了,只要拿一块 玻璃,就可以去配上与原先完全相同的玻璃。 ”同学们,你认为应该拿哪一块呢? 学生通过猜想、 验证得出三角形的内角和是 180 度,
14、要让学生能把所学到是 知识应用到生活中去,因此,我设计了应用情境,进行应用拓展,体会到数学的 作用,提高数学应用意识。 2、 剪三角形(在实物投影仪上操作)师:你们看,老师手上有一个大三角形,它的内角和是多少?仔细观察,我 用剪刀剪了一刀, 变成了两个三角形, 这个三角形的的内角和是多少度?另一个 三角形的内角和是多少度?将两个三角形再拼合起来这个大三角形的内角和是 多少度?请你们注意看, 老师将其中一个小三角形又剪成两个更小的三角形, 这 时这两个三角形的内角和分别是多少度?还可以继续往下剪吗?你发现了什 么?剪三角形的设计通过分、 合的辨析过程打破学生的定势思维, 更深刻地认 识到只要是三
15、角形,不管它的形状、大小,所有三角形的内角和都是 180 度。 学生对概念的掌握升华了,也渗透了变中蕴涵不变的数学思想。 教学反思:三角形的内角和是义务教育课程标准人教实验教科书四年级下册的教 材。四年级的学生正处于从具体思维向抽象思维过渡的关键期的认知特点, 在教 学中根据理论联系实际,注重使用直观教具的演示, 以多种教学方法来优化组合。 力图让本节课的教学过程真正成为学生自主学习的过程。大胆猜想、小心验证、自主探索是本课的主要学习方式, 学生是学习的主人, 教师是学习的组织者、 引 导者、合作者。一、猜想 - 探索新知的起点我设计了从学生熟悉的长方形来引入课题。 通过认识长方形的内角及他们
16、的 内角和,学生对内角及内角和的概念有了初步的认识, 再转移到直角三角形的内 角和,顺利地实现了图形之间的转换。 也为学生的猜想打下了伏笔, 让学生的猜 想有了一定的指向和集中, 学生的猜想就不会是漫无边际的瞎猜。 长方形剪成两 个直角三角形后,让学生大胆猜想直角三角形的内角和是多少度?学生第一直觉 是直角三角形的内角和肯定比 90 度大,但大多少没有数,后来有学生借助三角 板发现直角两个三角板的内角和都恰巧是 180 度,就猜想直角三角形的内角和 可能是 180 度。还有个更聪明的学生根据长方形剪成直角三角形推测直角三角 形的内角和是 180 度。猜想是新知识的探索起步阶段,有了大胆的猜想学
17、生的 思维被激活了,初步在头脑中架起了一座已知与未知的桥梁, 学生被猜想牵引着, 验证猜想是发自内心的需求,积极主动地参与到学习过程中来。二、验证 探索新知的过程任何猜想都要经过验证, 才能确定是否正确, 猜想验证的过程, 也是学生主 动参与数学知识的探索过程。 学生通过不同的渠道把猜想都集中在直角三角形的 内角和可能是 180 度上,到底猜想对不对能呢?我没有明确的作出结论,紧接 着让学生想办法去验证自己的猜想。 学生找到了量、 拼、折等不同的方法来验证 直角三角形的内角和是 180 度。然后再由直角三角形这特殊三角形到锐角三角 形、钝角三角形这样一般三角形的验证。 在学生交流验证方法时潜移默化地给学 生渗透了科学探索的方法, 特殊到一般的研究方法, 转化的数学思想, 使学生从 小受到了方法论思想的熏陶。按上面的思路设计进行执教,但在过程中我又在 思考:我这样设计是不是对学生引导过多了, 没有给学生一个更大胆的想象空间, 长方形过渡到直角三角形让
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文组合作学习教学方案范例
- 室内空气质量检测标准操作方案
- 厂房拆除施工安全技术方案
- 农民技术培训班合作协议书
- 快递行业智能化管理解决方案
- 提高印刷生产效能方案
- 语言心理学视角下的词汇学研究
- 2025-2030中国智慧照明技术发展趋势与节能效益分析报告
- 2025-2030中国智慧城市建设进展与PPP模式投资风险评估报告
- 员工心理健康提升培训方案
- DB65T 4766-2024公路波纹钢桥涵设计规范
- 《房产市场动态》课件
- 【大学课件】病毒性脑炎
- 园艺学概论课程练习题及答案全套
- 泵站日常运营与维护方案
- TDT1075-2023光伏发电站工程项目用地控制指标
- +高++中语文《琵琶行(并序)》理解型默写+统编版高中语文必修上册
- 设备分类分级管理方法
- 防水质保协议书范本简单模板
- DB32T-成人危重症临床护理技术规范 第6部分:患者身体约束
- 足球知识竞赛题库90道附答案【完整版】
评论
0/150
提交评论