




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、奥数常见题型一、盈亏问题解答盈亏问题的关键在于找出两次分配中,由于每次分配的数量的改变和剩余数变化的情 况之间的关系,然后运用盈亏问题的基本数量关系求出答案。盈亏问题的基本数量关系有:(盈+亏)十两次分配的差数(大盈-小盈)十两次分配的差数【例1】若干名同学去划船,他们租了一些船,若每船 4人则多5人,若每船5人则船上有 4个空位。问有多少名同学 ?多少条船?【分析】两种乘船情况,在面对同样多人数的时候,出现了多5人,少4人两种情形,差了5+4=9人。由于一条船4人,另一种情况一条船 5人,相对应的两条船差 5-4=1人。几条船 最终相差9人,为什么呢?9十仁9条船,共有4X 9+5=41名同
2、学。【例2】若干同学去划船,他们租了一些船,若每船 4人则多5人,若一条船上做6人,其 余每船5人则船上有3个空位。问有多少名同学?多少条船?【分析】将第二个情况转化为每船 5人则船上有2个空位,两种乘船情况,在面对同样多人 数的时候,出现了多 5人,少2人两种情形,差了 5+2=7人。由于一条船4人,另一种情况 一条船5人,相对应的两条船差 5-4=1人。几条船最终相差 7人,为什么呢?7十仁7条船, 共有 4X 7+5=33名同学。【例3】有一堆螺丝和螺母,若1个螺丝配2个螺母,则多10个螺母;若1个螺丝配3个螺母,则少6螺母。问:螺丝、螺母各有多少个?【分析】由“ 1个螺丝配2个螺母,则
3、多10个螺母”或知螺母是螺丝的2倍多10个;由“1个螺丝配3个螺母,则少6螺母”,可知螺母是螺丝的3倍少6个。螺丝有:(10+6) - (3-2)=16 个螺母有:16X 2+10=42个【例4】A,B两车同时从甲、乙两站相对开出,第一次距乙站78.4千米处相遇,相遇后两车仍以原速度继续行驶,并在到达对方车站后,立即沿原路返回,途中两车在距甲站53.2千米相遇,这次相遇点相距多少千米?【分析】两车同时从两地相向而行,第一次相遇两车共行了一个全程,在距乙站78.4千米处相遇,也就是 B车行了 78.4千米,说明每行一个全程B车就行78.4千米,第二次相遇两车共行了三个全程,B车共行了 (78.4
4、*3)千米,减去53.2千就是全程的距离。全程再减去78.4和53.2就是两次相遇点相距的距离。算式:78.4*3-53.2-78.4-53.2=78.4*2-53.2*2练习:1、 学校组织旅游,乘车时发现如果每辆车做25人,还有12人没有座位,如果每辆车做28人,还空下9个座位。请问共有多少辆车?多少人?(12+9) - (28-25)=7(辆)7X 25+12=187(人)2、 小红家买来一蓝橘子分给全家人 .如果其中二人每人分 3个,其余每人分 2个,则多出4 个;如果其中一人分 6个,其余每人分4个,则又缺12个,小红家买来多少个橘子 ?共有多少人?(3-2) X 2+4+12-(6
5、-4)=1616- (4-2)=8 人2X 3+2 X 6+4=22 个3、淼淼从家到学校,先用每分钟50米的速度走2分钟后,感到如果这样走下去,他上课就 要迟到8分钟。后来他改用每分钟 60米的速度前进,结果早到 5分钟。淼淼家到学校的距 离是多少?(50 X 8+60X 5) - (60-50)=70 分50 X (70+8)=3900 米#p#分页标题#e#二、年龄问题年龄问题的特点是:随着时间的变化,两个有的年龄之差永远不变,但原来二人年龄的倍数 和今后二年龄的倍数却发生了变化。【例1】父亲今年46岁,儿子今年14岁,当父亲的年龄是儿子的9倍时,父子的年龄和是多少岁?【分析】当父亲的年
6、龄是儿子的9倍时,父亲与儿子的年龄差还是46-14=32岁,父亲的年龄比儿子多9-仁8倍,其中的一倍是儿子当时的年龄,是32- (9-1)=4岁,父亲是4X 9=36岁。父子年龄和是 4+36=40岁。【例2】今年祖父的年龄是小明年龄的6倍,几年后祖父的年龄将是小明年龄的5倍。又过了几年,祖父的年龄将是小明年龄的4倍。问:小明今年多少岁?【分析】祖父和小明的年龄差是永远不变的,这个差是6-1=5 , 5-1=4 , 4-1=3的倍数,而5 ,4, 3=60(按常规祖父的年龄只能比小明大60岁),今年祖父比小明多6-1=5倍,可求出小强今年的年龄是 60- (6-1)=12 岁。练习二1、 爸爸
7、今年44岁,小强今年12岁,多少年前爸爸年龄是小强年龄的9倍?(44-12) - (9-1)=4 岁12-4=8 年2、 姐姐6年后的年龄与妹妹4年前的年龄和是 29岁,妹妹现在的年龄是两人年龄差的4倍。姐姐今年多少岁?(29-6+4) - (5+4)=3 岁妹妹:4X 3=12岁姐姐:5X 3=15岁3、 小亮比小明大 2岁,小刚比小军大1岁,小军年龄最小。5年前四人年龄和是8岁,5年后四人年龄和是 47岁,今年这四个小朋友各有多少岁?8+(5+5) X 4=48 岁年龄和相差48-47=1岁,说明有一人 10年间长了 9岁小军今年是4岁小刚今年4+1=5岁小亮今年是(27-9+2) - 2
8、=10岁小明今年是10-2=8岁#p#分页标题#e#三、鸡免问题学会运用假设法解题【例1】鸡免同笼,共100个头,280只脚。问:鸡、免各有多少只?【分析】假设这100只全是免,每只免有 4只脚,应该有4X 100=400只脚,实际只有280 只脚,相差了 400-280=120只脚。相差的原因是每只鸡多算了 2只脚,相差的总脚数 120 里含有多少个2,就是多少只鸡按免算了。 从而求出鸡的只数 120-2=60只,免有100-60=40 只。【例2】蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有以上三种 小虫16只,共有110条腿和14对翅膀,问:每种小虫各有几只?【分析】
9、从腿入手,蜘蛛有8条腿,而蜻蜓和蝉都有 6条腿,我们可以把6条腿的小虫看作 一种,这样就容易了。如果批 16只小虫都看用6条腿,那么应该有16X6=96条腿,而与实 际的110条腿,相差了 110-96=14条,相差的原因是批蜘蛛的8条腿当用6条来算的,这样就少算了 2条腿,少多少个 2就是蜘蛛的只数14 - (8-6)=7只,这样蜻蜓和蝉共有16-7=9只,再用假设法求出蜻蜓和蝉的只数。蝉有(9 X 2-14) - (2-1)=4只,蜘蛛有9-4=5只。【例3】某次数学竞赛共有 12题,评分标准是:每做对一道题得10分,每做错一道或不做题扣2分。明明参加这次竞赛,得了84分。问:明明做对了几
10、道题 ?【分析】如果12题全部答对了,应该得分为 12X 10=120分,而明明实际得了 84分,损失 了 120-84=36分,由做错一道或不做题扣 2分,可得如果有一题不答或答错, 将损失10+2=12 分,明明答错或不答的题数为 36- 12=3道,答对了 12-3=9道。练习三:1、 2角和5角的硬币共100枚,价值35元,二种硬币各有多少枚 ?(350-2 X 100) - (5-2)=50 枚5 角100-50=50枚2角2、 1角、2角和5角的硬币共100枚,价值20元,如果其中2角硬币的价值比1角硬币的 价值多13角,那么三种硬币各有多少枚?解:设1分的有a枚,2分的有b枚(5
11、-1)a+(5-2)b=5 X 100-2002b-a=13解方程得a=51,b=325分的有100-32-5仁17。3、 一个运输队包运1998套玻璃具。运输合同规定:每套运费以1.6计算,每损坏一套不仅不得运费,还要从总费中扣除赔偿费18元。结果运输队实际得到运费3059.6元,那么,在运输过程中共损坏了多少套茶具?(1.6 X 1998-3059.6) - (18+1.6)=7 套#p#分页标题#e#四、平均数问题【例1】 暑假期间,小强每天都坚持游泳,并对所游的距离作了记录如果他在暑假的最后一天游670米,则平均每天游495米;如果最后一天游 778米,则平均每天游498米;如果他 想
12、平均每天游500米,那么最后一天应游多少米?【分析】因为平均每天所游的距离提高498-495=3米,需要多游778-670=108米,所以暑假一共有108十3=36天,如果平均每天游500米,则要在最后一天游 (500-498) X 36+778=850 米。【例2】 某次数学竞赛原定一等奖 10人,二等奖20人,现在将一等奖中最后 4人调整为 二等奖,这样得二等奖的学生的平均分提高了1分,得一等奖的学生的平均分提高了3分,那么原来一等奖平均分比二等奖平均分多 分。【分析】解法一:根据题意可知:前六人平均分=前十人平均分+3,这说明在计算前十人平均分时,前六人共多出3 X 6=18(分),来弥
13、补后四人的分数。因此后四人的平均分比前十人平均分少 18十4=4.5分,也就是:后四人平均分=前十人平均分一 4.5 。当后四人调整为二等奖,这样二等奖共有20+4=24(人),平均每人提高了 1分,也就由调整进来的四人来供给,每人平均供给24- 4=6(分),因此,四人平均分=(原来二等奖平均分)+6 , 与前面式比较,原来一等奖平均分比原来二等奖平均分多4.5+6=10.5(分)。【解法二】图上横向的线表示人数,竖向的线表示分数,红线表示原来的的一等奖和二等奖,蓝线表示调整后的一等奖和二等奖,虽然一、二等奖的人数和平均分发生变化,但一、二等奖的总分没有变,也就是说图上红线的两个长方形的面积
14、之和等于蓝线的两个长方形的面积之和,我们观察图可以发现两块黄色小长方形的面积等于蓝色长方形的面积(10-4) X 3+20X 1=38,蓝色长方形的长是 4,宽就是38- 4=9.5,原一等奖比二等奖的平均分高9.5+1=10.5分。练习四:1. 甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩要比甲班平均成绩高 7分,那么乙班的平均成绩是 分。49X 7- (51+49)=3.43 分81+7-3.43=84.57 分2. 某次数学竞赛原定一等奖10人,二等奖20人,现在将二等奖中前 4人调整为一等奖,这样得二等奖的学生的平均分下降了1分,得一等奖的学生的平均
15、分下降了2分,那么原来一等奖平均分比二等奖平均分多分。(10 X 2+20X 1) - 4=10 分#p#分页标题#e#五、还原问题还原问题也叫倒推问题。解答还原问题的方法,是用加、减法互为逆运算和乘、除法互为逆运算的原理,从最后一次运算的结果,一步一步地往回推理,直到推得原数为止。【例1】村姑卖鸡蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二个蛋,问这篮鸡蛋有多少个?【分析】从上面线段图可以看出:最后剩下2个再加上第三次卖出的再余下的一半以外的2个,就是再余下的一半,由此可求出再余下的是(2+2) X 2=8(个).8个再加上第二次
16、卖出余下的一半以外的2个就是余下的一半,因此可求出余下的是:(8+2)X2=20(个)20个再加上第一次卖出一篮的一半以外的2个就是全篮的一半,因此可求出全篮鸡蛋的个数是:(20+2) X 2=44(个)答:这篮鸡蛋有 44个.【例2】甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数 都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。如果他们三人共有81元,那么三人原来的钱分别是多少元?【分析】三人最后一样多,所以都是81十3=
17、27元,然后我们开始还原:(1)甲和乙把钱还给丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是 27- 3=9,丙是81-9-9=63;(2) 甲 和丙把钱还给乙:甲 9十3=3,丙63十3=21,乙81-3-21=57;(3)最后是乙和丙把钱还给甲:乙 57 - 3=19,丙 21-3=7,甲 81-19-7=55 元.练习五:1、某粮库有面粉若干袋, 第一次卖掉原有的一半少 12袋,第二次卖出剩下的一半多 10袋, 第三次又卖出48袋,这时还剩28袋。求粮库中原有面粉多少袋 ?(48+28+10) X 2 12 X 2=320 袋2、 袋里有若干个球,小明每次拿出其中的一半再放回一个球
18、,这样共操作了5次,袋中还有3个球。问:袋中原有多少个球?(3-1) X 2=4 个(4-1) X 2=6 个 (6-1) X 2=10 个 (10-1) X =18 个(18-1) X 2=34 个3、 有119只蜜蜂在三棵枣树上采蜜 .一会儿有10只蜜蜂从第一棵枣树上飞到第二棵枣树上 ; 过了一会儿,又有20只蜜蜂从第二棵枣树上飞走了 这时三棵枣树上的蜜蜂正好一样多, 第 二棵枣树上原来有多少只蜜蜂 ?(119-20) - 3-10+20=43 只小升初常见奥数提醒,奥数网小编现将整理如下,希望同学们认真解答每道题,掌握解题步 骤和原理。1、 (归一问题)工程队计划用60人5天修好一条长4
19、800米的公路,实际上增加了 20人,每人每天比计划多修了4米,实际修完这条路少用了几天?2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点 40千米处相遇。东西两地相距多少千米?3、 (追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车 每小时行84千米,大客车出发 2小时后小轿车才出发,几小时后小轿车追上大客车?4、 (过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。已知列车的速度是每分钟1000米,列车车身长多少米?5、 (错车问题)一列客车车长280米,一列货车车长 200米,在
20、平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少?6、 (行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有 6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少?7、 (和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?8、 (差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?9、 (和差问题)一只两层书架共放书72本,若从上层中拿出 9本给下层,上层还比下 层多4本,上下层各放书多少本?10、(周期问题)2006年7月1日是星期六,求10月1日是星期几?11、(鸡兔同笼问题)小丽买回0、8元一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 植物组织培养技术在植物生物材料加工中的应用前景报告
- 统计初级考试试题及答案
- 智能网联汽车的市场前景试题及答案
- 社交媒体对家具设计的影响研究试题及答案
- 智能物流在农村电商中的应用试题及答案
- 班组长履职报告
- 泰安英语考编试题及答案
- 水利工程与土木的关系试题及答案
- 文化产业发展专项资金2025年申请与政策环境分析报告
- 矿洞游戏测试题及答案
- 网络传播法规(自考14339)复习必备题库(含答案)
- Django 3 Web应用开发实战(下篇)
- 学会感恩说课课件
- 大学生志愿服务西部计划考试复习题库(笔试、面试题)
- 《建筑制图与识图》课程标准
- 箱涵工程监理实施细则
- 公路养护的高级工复习题
- 三人合伙经营协议书 doc 三人合伙经营协议书实用版(六篇)
- JJF 1793-2020海水营养盐测量仪校准规范
- GB/T 20080-2017液压滤芯技术条件
- 超音速流动与燃烧的大涡模拟基础课件
评论
0/150
提交评论