激光测试原理与技术课程论文教材_第1页
激光测试原理与技术课程论文教材_第2页
激光测试原理与技术课程论文教材_第3页
激光测试原理与技术课程论文教材_第4页
激光测试原理与技术课程论文教材_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、分 数:评卷人:研究生(激光测试原理与技术)实验报告题 目:改进的小波阈值法在激光诱导击穿光谱信号降噪中的应用研究学号M201572550姓名郭 阳 敏专业光 学 工 程课程指导教师院(系、所) 武汉光电国家实验室2016 年 06 月 14 日改进的小波阈值法在激光诱导击穿光谱信号降噪中的应用研究郭阳敏, M201572550华中科技大学,武汉光电国家实验室(筹) ,湖北 武汉 430074摘 要:论文以小波分析理论为基础,对激光诱导击穿光谱信号降噪问题展开研究。研究 在传统的小波阈值去噪法的基础上,对阈值函数进行了改进并提出分层阈值优化算法。首 先运用改进的方法在仿真光谱上进行测试处理,

2、选择 sym8小波基函数进行 4层分解,以信噪 比(SNR)和均方根误差( RMSE)为评价标准。降噪后的信号信噪比最大增加 4.5 dB,均方 根误差最大减小 0.39。然后在实测光谱上进行验证, 选择有机玻璃(PMMA )光谱中516.5 nm 处的C-C键峰、 247.9 nm处的C I峰和656.3 nm处的H原子峰为处理对象。降噪后的信号信噪 比最大增加 61.8861,峰值误差( PE)均在 1%以下。实验结果证明了改进的降噪方法对于 优化激光探针光谱、提高信噪比的优越性。关键词: 激光诱导击穿光谱;小波分析;阈值;降噪1 引言激光诱导击穿光谱( Laser Induced Bre

3、akdown Spectroscop,y 简称LIBS )是原子发射光 谱法( Atomic Emission Spectroscopy简, 称 AES)中的一种。自从 1962年Breech和Cross首次 报道LIBS技术 1 以来, LIBS技术多年来持续成为研究热点,现已初步实现了工业应用, 在工业生产 2 、环境污染 3 、生物医药 4 、食品安全 5 、军事 6和太空探测 7等诸 多领域 8,9具有广泛的应用前景。噪声是影响 LIBS光谱信噪比和限制 LIBS 技术检测极限的一个重要因素。在光谱采集的 过程中不可避免地会收集到噪声,光子辐射时的散粒噪声、器件的暗电流、载流子运动产

4、生的热噪声以及自然光等都是光谱中存在噪声原因。运用数据处理的方法对LIBS 光谱降噪是低成本且有效的解决方案。由于 LIBS 光谱为典型的非平稳信号,传统的傅里叶分析方法 不能取得理想的降噪效果。作为傅里叶分析的进一步发展,小波分析在时域和频域都具有 较好的局部特性,是处理非平稳信号的有效工具。利用小波分析对 LIBS 光谱进行处理的研 究也越来越多。 Zhang等10 在离散小波变换半软阈值去噪的基础上提出双阈值优化模型, 探测极限降低超过 50%,信噪比改善 2倍。 Yuan等11在离散小波变换硬阈值去噪法的基础 上对空气、 氩气和氦气环境下煤中的 C元素谱线进行处理, 谱线的信噪比分别提

5、升了 2倍、2 倍和3倍。 Zhang等12利用熵分析来确定小波阈值去噪过程中最优的分解层数,优化后的 探测极限降低超过 50%。小波阈值去噪方法是一应用广泛、效果较好的去噪方法。运用小波阈值法进行去噪的 关键是对小波系数进行阈值处理。阈值的作用方式和阈值的选取是影响去噪效果的关键因 素。论文提出了一种改进的阈值函数和分层阈值优化算法,并在测试信号上进行了仿真实 验,在实测激光探针信号上进行了验证。2 实验装置及原理LIBS技术是通过高能量密度的脉冲激光聚焦到被测物质表面,烧蚀产生高亮、高温等 离子体,进而通过采集分析等离子体中的发射光谱来确定被测物质中各元素的成分及含量。 激光诱导击穿光谱实

6、验装置系统如图 1所示,基本原理如下: 高能量密度的激光脉冲聚焦到 待测样品表面,烧蚀产生等离子体后,等离子体对外发射特定频率的光子,不同元素和浓 度的粒子的发射谱线的波长和强度不同。将等离子体辐射光通过光收集器收集并耦合到光 纤中,传输至光谱仪进行分光,光谱仪配备增强型电荷耦合器件( ICCD )进行光电转换, 最后将光谱数据传输至计算机进行处理和分析。通过获取特征谱线的波长和强度信息能够 分别推导出待测样品中元素的种类及其含量信息。3 改进的小波阈值去噪模型运用小波阈值法进行去噪的基本思想是, 当小波系数 j,k 小于某个值时,认为这些小波 系数代表噪声的信息,可以被去除。当小波系数 j,

7、k 大于这个阈值时,认为些小波系数代 表有用信号的信息。然后对这些系数进行阈值处理,硬阈值函数就不对这一部分的小波系 数处理直接保留这些小波系数;软阈值函数对这一部分的系数减去一个固定的值。然后用 处理后的小波系数进行小波反变换进行重构,得到去噪后的信号。3.1 改进的阈值函数硬阈值函数由于在阈值点处不连续会导致处理之后的信号产生振荡且去除噪声较少。软阈值函数虽然在阈值点处连续,但软阈值函数处理之后的小波系数与原始信号的小波系数存在着恒定的偏差。当噪声在信号中的分布很不规则时,运用软阈值函数处理得到的信号会出现过度去噪的情况产生失真。这都是在光谱去噪过程中要避免地问题。为了克服传其中:d为小波

8、系数; t为阈值;a和N 为两个调节参数,(1)统的阈值函数存在的缺点,论文提出一种改进的阈值函数。它的表达式如下:且1 a 2 ,0 N 1 0。当N10时,改进的阈值函数趋近软阈值函数;当 N0,a1时,改进的阈值函数趋近硬阈值函数。 改进的阈值函数在阈值点处是连续的,而且通过改变调节参数 a和 N 可以调节估计系数与 含噪信号的小波系数之间的偏差,比软阈值函数和硬阈值函数更具适用性。改进的阈值函 数如图 2 所示。图2 改进的阈值函数3.1 分层阈值优化原理运用小波阈值法对信号进行降噪时,阈值的选取也是其中一个关键部分。传统的阈值 选择方法产生的都是全局阈值,即在每一层上的阈值都是相同的

9、。但在实际情况中,含噪 的光谱经过小波变换分解后,噪声的小波系数在每层的分布是不同的,因此采用全局阈值 进行降噪处理是存在一定缺陷的。论文提出一种分层阈值优化的方法。首先,以计算全局 Penalized阈值的方法计算分层阈值。 SIGMA 为零均值的高斯白噪声的标准偏差; ALPHA 是用于处罚的调整参数。设 t* 为 crit(t)=- sum(c(k)2,k t)+2*SIGMA2*t*(ALPHA+log(n/t) 的最小值。 c(k)是为小波包系数, n 表示系数的个数,则 THR=|c(t*)| 。分别以每一分解层 的小波系数进行计算即可得到每一层的阈值。然后,以信噪比为优化标准对分

10、层阈值自底 向上逐层优化,最终得到最优化的阈值。分层阈值优化原理如图 3 所示。图 3 分层阈值优化原理4 仿真测试结果与分析仿真测试在 Matlab 软件上编程实现。论文选用 Matlab 软件中的测试信号进行仿真测试 实验,其数据长度为 1024,如图 4(a)所示。通过编程添加噪声至测试信号上,计算得到加 入噪声后信号的信噪比为 15.3699 dB。添加了噪声的测试信号如图 4(b)所示。图 4(b) 原始含噪声信号图 4(a) 无噪声原始信号仿真测试中小波基函数选择 sym8,分解层数为 4 层。在小波去噪方面, 目前的质量评价 方法主要有 4 种13:均方根误差,信噪比与信噪比增益

11、法,互相关关系以及平滑度。本文 选用信噪比 SNR和均方根误差 RMSE 来评价降噪的效果。降噪后计算得到的信噪比值越大、 均方根误差值越小,说明降噪的效果越好。其表达式分别如下:其中:x(i) 表示原始无噪声信号, 表示降噪处理后的信号,(2)(3)N 为信号长度。4.1 改进的阈值函数仿真测试结果与分析在改进的阈值函数仿真测试中,论文选用四种经典的阈值选取准则:通用阈值、 Stein 无偏似然估计阈值、 启发式阈值和最大最小准则阈值。 为了说明改进的阈值函数的有效性, 论文分别运用软阈值、硬阈值和改进的阈值函数对测试信号进行去噪处理,并对处理结果 进行对比分析。选取 minimaxi 阈值

12、为例,说明调节因子 a和 N 的调节作用(如图 5所示)。 以 SNR 和 RMSE 为评价标准,得到三种方法的处理结果(如表 1 所示)。图 5(a) minimaxi 阈值处理 RMSE 值 图 5(b) minimaxi 阈值处理 SNR 值 调节因子 a和N对阈值函数进行调节,由图 5看出,a和N的调节作用在 SNR和RMSE 值上有很明显的规律性。随着 a值的增大, RMSE的值均减小, SNR的值均增大;随着 N 值的增大, RMSE 的值先减小后增大, SNR 的值先增大后减小。对于不同的阈值,都可以 通过调节因子 a和 N的值来确定最优的阈值函数形式。表 1 不同阈值函数处理的

13、 SNR 和 RMSE阈值软阈值函数硬阈值函数改进的阈值函数SNR/ dBRMSESNR/ dBRMSESNR/ dBRMSErigrsure21.96760.465918.12190.725421.96760.4659heursure21.35260.500121.63650.484022.03950.4621sqtwolog18.77040.673221.21420.508121.28040.5043minimaxi20.83270.531019.46040.621821.88130.4706运用信噪比和均方根误差的公式计算得到加入噪声后含噪信号的信噪比为 15.3699dB,均方根误差为

14、 0.9959。从表 1 的处理结果可看出,经过降噪处理之后信号的信噪比明 显增大和均方根误差明显减小。 论文选用 4 种经典的阈值选取准则, 分别运用软阈值函数、 硬阈值函数和改进的阈值函数进行降噪处理。表 1 的结果说明,当选择 rigrsure 阈值和 minimaxi 阈值的时候,软阈值函数的处理效果要比硬阈值函数的处理效果好。当选择 heursure 阈值和 sqtwolog 阈值的时候,硬阈值函数的处理效果要比软阈值函数的处理效果 好。当选择 rigrsure阈值时, 改进的阈值函数处理效果和软阈值函数的处理效果相同。 这是 因为选择 rigrsure阈值时,经过调节因子 a和 N

15、调节后改进的阈值函数和软阈值函数相同。 当选择其他三种阈值时,运用改进的阈值函数进行降噪处理后,信号的信噪比比运用软阈 值函数和硬阈值函数进行降噪处理后的值都要大。实验结果表明,改进的阈值函数的降噪 效果的确优于软阈值函数和硬阈值函数的降噪效果。图 6 不同阈值函数处理结果对比图 6 为软阈值函数、硬阈值函数和改进的阈值函数选取 4 种不同阈值对测试信号进行 降噪处理的结果对比。 黑色部分为软阈值函数处理结果, 红色部分为硬阈值函数处理结果, 蓝色部分为改进的阈值函数处理结果。从图中结果可看出,软阈值函数和硬阈值函数对于 4 种阈值选取准则不具有普遍适用性。改进的阈值函数选取 4 种阈值进行降

16、噪处理均取得 了较好的效果,证明改进的阈值函数适用性更强。4.2 分层阈值优化仿真测试结果与分析仿真测试的参数选择与改进阈值函数仿真测试的参数相同,阈值函数选用改进的阈值 函数。对测试信号进行降噪处理后的结果如图 7(a)所示,图 7(b)为细节部分。从降噪后的 信号可以看出,降噪后的信号相比于未经处理的含噪信号噪声明显减少,降噪后的信号峰 与无噪声信号的信号峰基本重合。从处理后信号的细节可以看出,降噪处理后的信号与原 信号吻合较好。仿真测试结果说明选用分层阈值优化算法对测试信号进行降噪处理在去除 大量噪声的同时还较好地保存了信号的有用信息。图 7(a) 分层阈值优化仿真测试图 7(b) 仿真

17、测试细节表 2 给出了每优化一层阈值后的 SNR 和 RMSE 值 ,在每优化一层的阈值之后, SNR 均 增大, RMSE 均减小,说明信号质量在变好。分层阈值优化完成后即得到了最优化的阈值, 然后运用改进的阈值函数结合最优化阈值对测试信号进行降噪。对测试信号进行降噪处理 得到的结果比仅运用改进阈值函数处理的结果的 SNR 值要大, RMSE 值要小,说明了分层 阈值优化在改善降噪效果上的有效性。表 2 分层阈值优化的 SNR 和 RMSE优化层次SNR/ dBRMSE21.754122.280922.516322.65150.47750.44940.43740.4306图 8 分层阈值优化

18、信噪比和均方根误差变化趋势图 8 给出了逐层优化阈值时信噪比值和均方根误差值的变化趋势, 横坐标表示分解层 对分层阈值优化的仿真测试结果进行分析可以看出,分层阈值估计对第一层和第二层的阈 值估计的较为准确。在优化第四层和第三层的阈值之后,信号的信噪比增大幅度较大,均 方根误差的减小幅度较大;而优化第二层和第一层的阈值之后,信噪比和均方根误差改善相对较小。未优化之前的 SNR值为 21.3151 dB,RMSE值为 0.5023,经过自底向上逐层优 化后得到最优化阈值,处理结果的 SNR值为 22.6515 dB,RMSE值为 0.4306。而仅运用改进的阈值函数处理得到的最好结果 SNR值为

19、22.0395 dB,RMSE值为 0.4621。5 实测光谱信号处理结果与分析论文选择聚甲基丙烯酸甲酯( PMMA )的光谱信号作为待处理信号。小波基函数确定 为 sym8函数,分解层数为 4 层。实测处理主要对特征谱峰进行降噪, 选择三个信噪比不同 的谱峰进行处理,通过结果分析本文提出的方法对不同信噪比谱峰的降噪效果。由于对实 测光谱进行降噪处理时无法得到不含噪声的原始光谱信号,因此无法如仿真测试一样计算SNR和RMSE的值,实测信号处理中选用信噪比 SNR和峰值误差 PE作为评价标准, SNR 的计算方法与仿真测试中的计算不同, SNR和 PE分别由式( 4)和式( 5)得到。 PE值越

20、 小,说明降噪处理前后的峰值改变越小。 SNR值越大, PE值越小,说明降噪效果越好。(4)(5)其中: 为谱峰峰值;为背景;为背景的标准偏差,示为噪声;为处理后的信号的谱峰峰值。实测处理中选择的三个谱峰分别为 516.5 nm处的 C-C键峰、 247.9 nm处的 C I峰和 656.3 nm处的 H 原子峰。它们的原始 SNR 值分别为 24.5734、54.3585和 116.2233。它们的9 为实测原始信号和降噪后的SNR 值逐渐增大,信号质量逐渐变好,选择它们来进行降噪处理是为了得到改进小波阈值 去噪法对不同信噪比信号的降噪处理效果,具有代表性。图信号对比。图 9 PMMA 实测

21、光谱降噪处理结果对比10从图 9 中我们可以看出,运用本文提出的方法对 PMMA 实测光谱进行降噪处理能很好 地保留信号的谱峰等细节部分。 C-C 键峰原始信号的信噪比比较小,降噪处理之后信号质 量得到了明显的改善,谱线更加光滑,且较好地保留了信号的细节部分; C I 峰谱线相对较 为简单没有复杂的细节部分,处理之后的信号也能明显看出更光滑; H 原子峰原始信号的 信噪比较大,谱线也较为简单,处理前后的信号在图中看不出很明显的区别。为了进一步说明本文提出的方法在实测光谱降噪处理中的有效性,下面通过处理前后 的信噪比和峰值误差的数据来进行分析。图 10 给出了三种谱峰处理前后的 SNR 值,黑色

22、 为原始信号的 SNR 值,红色为仅运用改进的阈值函数处理后的 SNR 值,蓝色为运用改进 的阈值函数及分层阈值优化算法处理后的 SNR 值。表 3 为降噪处理后的 SNR 值。表 3 PMMA 实测光谱处理 SNR 值谱峰C-C 516.5 nmC I 247.9 nmH 656.3 nm原始信号24.573454.3585116.2233改进的方法处理86.459592.1960123.0407表 3 的结果表明, C-C 键峰在运用改进的小波阈值法进行降噪处理后 SNR 值增加了 61.8861,C I 峰在处理之后 SNR 值增加了 37.8375, H 原子峰在处理之后 SNR 值增

23、加了 6.8174。从图 10 可以看出,运用改进的阈值函数及分层阈值优化算法处理结果的 SNR 值均 有增大。原始信号的信噪比越小,处理之后的 SNR值增加越大。从 C-C键峰和 C I 峰的处 理结果可以明显地看出 SNR 的增大, H 原子谱峰处理结果的 SNR 增加不大。因为 H 原子 谱峰的原始信噪比已经很大,所以降噪处理结果的改善相对不明显。11表 4 PMMA 实测光谱处理 PE值谱峰信号C-C 516.5 nmC I 247.9 nmH 656.3 nmPE(%)0.901.090.05PE值是表征降噪处理前后峰值的变化大小,如果处理之后的峰值变化很大,则必定会影响后续的定性、

24、定量分析。因此, PE也是评价降噪效果的一个重要标准。从表 4 我们可 以看出, C-C 键峰和 C的一价离子峰降噪处理之后的 PE值均在 1%左右, H 原子谱峰处理 之后的 PE值为 0.05%。这说明运用改进的阈值函数及分层阈值优化算法对实测光谱进行降 噪处理对谱峰的改变很小。降噪处理结果的 SNR 增大,PE 值较小,说明了本文提出的方 法在实测光谱处理中的可行性。6 结论 论文针对软阈值函数处理存在恒定偏差,硬阈值函数在阈值点处不连续的缺点,提出 了一种改进的阈值函数;针对传统阈值去噪方法选择全局阈值的不足,提出一种分层阈值 优化的算法。仿真测试结果中,降噪后的信号信噪比最大增加4.

25、5 dB,均方根误差最大减小0.39。运用改进的方法对实测 PMMA 激光诱导击穿光谱信号进行降噪处理,信号信噪比最 大增加 61.8861,峰值误差( PE)均在 1%以下。实验结果证明了改进的阈值函数及分层阈 值优化算法在实测激光诱导击穿光谱降噪中的可行性。参考文献1. F. Brech and L. Cross, Optical microemission stimulated by a ruby laser.Appl. Spectrosc. , 1962, 16(2),59.2. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. M? nch

26、, L. Peter and V. Sturm, Laser-induced breakdown spectrometry applications for production control and quality assurance in the steel industry. Spectrochim. Acta B: At. Spectrosc. , 2001, 56(6), 637-649.3. D. Daz, D.W. Hahn and A. Molina, Laser-induced breakdown spectroscopy (LIBS) for detection of a

27、mmonium nitrate in soils. In SPIE Defense, Security, and Sensing , 2009, International Society for Optics and Photonics.4. R. A. Multari, D. A. Cremers, J. M. Dupre and J. E. Gustafson, The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains.

28、 Appl. Spectrosc., 2010, 64(7), 750-759.5. V. Juv , R. Portelli, M. Boueri, M. Baudelet and J. Yu, Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy. Spectrochim. Acta B: At.12Spectrosc., 2008, 63(10), 1047-1053.6. S. Sree

29、dhar, M. K. Gundawar and S. V. Rao, Laser Induced Breakdown Spectroscopy for Classification of High Energy Materials using Elemental Intensity Ratios. Defence Science Journal , 2014, 64(4), 332-338.7. A. K. Knight, N. L. Scherbarth, D. A. Cremers and M. J. Ferris, Characterization oflaser-inducedbreakdown spectroscopy (LIBS) for application to space exploration. Appl. Spectrosc., 2000, 54(3), 331-340.8. D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applic

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论