集合集合含义与表示_第1页
集合集合含义与表示_第2页
集合集合含义与表示_第3页
集合集合含义与表示_第4页
集合集合含义与表示_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、集合集合含义与表示 集合集合 集合含义与表示集合含义与表示集合间关系集合间关系集合基本运算集合基本运算 列举法列举法 描述法描述法 图示法图示法真子集真子集补集补集并集并集交集交集 一、知识结构一、知识结构 集合集合含义与表示 211- ,=M 421, ,MxxyyN= 2 二、例题与练习二、例题与练习 变式:变式:xyxNRxyyM x 3 log1|,2|= 集合集合含义与表示 D 集合集合含义与表示 5.设设 , , 其中其中 , ,如果如果 ,求实数,求实数a a的取值范围的取值范围 222 40,2(1)1 0Ax xxBx xax a= = xRABB= 集合集合含义与表示 6

2、. 6 .设全集为设全集为R,集合,集合 , (1)求:)求: AB,CR(AB); (2)若集合)若集合 ,满足满足 ,求实数,求实数a的取值范围。的取值范围。 31|=xxA 242|=xxxB 02|=axxC CCB= 集合集合含义与表示 7.7.设设 , ,且且 ,求实数,求实数 的的a取值范围。取值范围。 BCC= AxxyyBaxxA=,103|,3| AxxzzC=,5| 集合集合含义与表示 知识知识 结构结构 概念概念 三要素三要素 图象图象 性质性质 指数函数指数函数 应用应用 大小比较大小比较 方程解的个数方程解的个数 不等式的解不等式的解 实际应用实际应用 对数函数对数

3、函数 函函 数数 集合集合含义与表示 函数的复习主要抓住两条主线函数的复习主要抓住两条主线 1、函数的概念及其有关性质。、函数的概念及其有关性质。 2、几种初等函数的具体性质。、几种初等函数的具体性质。 集合集合含义与表示 函数的概念函数的概念 B C x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6 A 函数的三要素:定义域,值域,对应法则 A.BA.B是两个非空的集合是两个非空的集合, ,如果按照如果按照 某种对应法则某种对应法则f f,对于集合对于集合A A中的中的 每一个元素每一个元素x x,在集合在集合B B中都有唯中都有唯 一的元素一的元素y y和它对应,这样的对和

4、它对应,这样的对 应叫做从应叫做从A A到到B B的一个函数。的一个函数。 集合集合含义与表示 反比例函数反比例函数 k y x = 1、定义域、定义域 . 2、值域、值域 3、图象、图象 k0 k0 a1 0a 0,a1) 集合集合含义与表示 对数函数 yx a a =log其中且 a 01 1、定义域、定义域 . 2、值域、值域 R 3、图象、图象 a1 0a1 R+ y xo y xo 1 1 集合集合含义与表示 在同一平面直角坐标系内作出幂函数在同一平面直角坐标系内作出幂函数y=x,y=x2, y=x3,y=x1/2,y=x-1的图象:的图象: 集合集合含义与表示 (-,0)减减(-,

5、0减减 (1,1)(1,1)(1,1)(1,1)(1,1)公共点公共点 (0,+)减减 增增增增 0,+)增增 增增单调性单调性 奇奇 非奇非非奇非 偶偶 奇奇偶偶奇奇奇偶性奇偶性 y|y00,+)R0,+)R值域值域 x|x00,+)定义域定义域 y=x-1y=x3y=x2 y=x 函数函数 性质性质 幂函数的性质幂函数的性质 2 1 x y = 集合集合含义与表示 使函数有意义的使函数有意义的x x的取值范围。的取值范围。 求定义域的主要依据求定义域的主要依据 1 1、分式的分母不为零、分式的分母不为零. . 2 2、偶次方根的被开方数不小于零、偶次方根的被开方数不小于零. . 3 3、零

6、次幂的底数不为零、零次幂的底数不为零. . 4 4、对数函数的真数大于零、对数函数的真数大于零. . 5 5、指、对数函数的底数大于零且不为、指、对数函数的底数大于零且不为1.1. 6、实际问题中函数的定义域、实际问题中函数的定义域 集合集合含义与表示 例例1 1 求函数求函数 的定义域。的定义域。 1 1 log(2) x x y = (2)x| ) yf x= 2 的定义域为x4 , 求y=f(x 的定义域 例例2.2. 抽象函数的定义域:抽象函数的定义域:指自变量指自变量x x的范围的范围 集合集合含义与表示 待定系数法、换元法、配凑法待定系数法、换元法、配凑法 1, 已知已知 求求f(

7、x).xxxf3) 1(= 2, 已知已知f(x)是一次函数,且是一次函数,且ff(x)=4x+3求求f(x). 3,已知,已知 求求f(x).2 1 ) 1 ( 2 2 = x x x xf 集合集合含义与表示 求值域的一些方法:求值域的一些方法: 1、图像法,、图像法,2 、 配方法,配方法,3、逆求法,、逆求法, 4、分离常数法,、分离常数法,5、换元法,、换元法,6单调性法。单调性法。 12, 6x 2 2yxx= a) b) c) x ey = d) 52 73 = x x y ) 3(log3=xy 集合集合含义与表示 函数的单调性: 如果对于属于这个区间的任意两个 自变量的值x1

8、 , x2 ,当x1 x2 时,都有 f (x1)f (x2) ,那么就说f (x)在这个区间上 是增函数。 如果对于属于这个区间的任意两个 自变量的值x1,x2 ,当x1f(x2) ,那么就说f(x)在这个区间 上是减函数。 集合集合含义与表示 反比例函数反比例函数 k y x = 1、定义域、定义域 . 2、值域、值域 4、图象、图象 k0 k0 a1 0a 0,a1) R+ 集合集合含义与表示 对数函数 yx a a =log其中且 a 01 1、定义域、定义域 . 2、值域、值域 .R 3、单调性、单调性 4、图象、图象 a1 0a0的解集为的解集为 例例3 若若f(x)是定义在是定义在-1,1上的奇函数,且在上的奇函数,且在-1,1是单调是单调 增函数,求不等式增函数,求不等式f(x-1)+f(2x)0的解集的解集. 集合集合含义与表示 函数的图象函数的图象 1、用描点法画图。、用描点法画图。 2、用某种函数的图象变形而成。、用某种函数的图象变形而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论