运筹学实验报告----向市场运送木材问题_第1页
运筹学实验报告----向市场运送木材问题_第2页
运筹学实验报告----向市场运送木材问题_第3页
运筹学实验报告----向市场运送木材问题_第4页
运筹学实验报告----向市场运送木材问题_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、运筹学实验报告-向市场运送木材问题一、实验目的:在用MATLAB程序设计语言完成单纯形算法求解线性规划问题的基础上,设计程序并建立数学模型,解决现实生活中实际问题。二、问题陈述:阿拉巴马大西洋公司(Alabama Atlantic)是一个拥有三个木材资源区和五个需要供应的市场的木材公司。木材资源区1、2、3每年所能够生产的木材量分别为15、20、1500万板英尺(board feet)。每年市场1、2、3、4、5能够销售的木材量分别为11、12、9、10、800万板英尺。过去,这个公司通过火车来运输木材。然而,由于使用火车的运输成本已经上升了,所以可以考虑使用水运的方式来运输其中的一部分木材。

2、但是这种方式却需要公司要在水运方面进行投资。使用火车运输的单位成本(单位:1千美元) 使用轮船运输的单位成本(单位:1千美元)123451312824-35231432824313-3336322612345161724555662697860495635966636147出发地 对于向市场运输木材的轮船的单位资金投入(单位:1千美元)123451275303238-28522933182702502653-283275268240考虑到轮船的预计使用期限(大约30年)和货币的时间价值,年金成本大约是当年投入资金的十分之一。公司的目标是要制订出一个全面运输计划,使总年金成本最小(包括运输成本)

3、。现在,如果你是公司管理科学小组的负责人。那么所需要做的工作是根据下面所给出的三种选择分别制订出这种能够使得年金成本最小的运输计划。选择l :继续使用火车来运输木材,并仅使用这一种方式。选择2 :仅使用轮船运输木材(只能使用火车的地方除外)。选择3 :根据在每一条特定的路线上哪种方式的运输成本比较低来选择使用火车还是轮船来运输木材。根据上述每一种情况,列出各自的数学模型,并用MATLAB求解,最终比较哪一种方案比较好。三、问题分析情况一:只用火车运输木材,根据如下列表12345161724555662697860495635966636147可列方程如下:(z为一年基本运费,xij为i号生产地

4、向j号销售地运输量)minz=61x1+72x2+45x3+55x4+66x5+69x6+78x7+60x8+49x9+56x10+59x11+66x12+63x13+61x14+47x15s.t. x1 + x2 + x3 + x4 + x5 15x6 + x7 + x8 + x9 + x10 20x11 + x12 + x13 + x14 + x15 linp3A=1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0;0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0;0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1;1 0 0

5、0 0 1 0 0 0 0 1 0 0 0 0 0 0 0;0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0;0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0;0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0;0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0b=15;20;1500;11;12;9;10;800c=61 72 45 55 66 69 78 60 49 56 59 66 63 61 47 0 0 0中间运行过程省略。已找到最优解!最优可行解为:x = 0 0 9 0 0 0 0 0 10 0

6、11 12 0 0 800 6 10 677最优值为:minf = 39936最优解对应的单纯形表为:optmatrx = Columns 1 through 7 -2 -6 0 -6 -19 -10 -12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 -1 -1 0 0 -1 -1 -1 0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 -1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 Columns 8 through 14 -15 0 -9 0 0 -18 -12 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 -1

7、0 0 1 1 0 0 0 0 1 0 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 -1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 Columns 15 through 19 0 0 0 0 39936 0 0 0 0 11 0 0 0 0 10 0 0 0 1 677 0 0 0 0 12 0 1 0 0 6 0 0 1 0 10 0 0 0 0 9 1 0 0 0 800情况二:只用轮船运输木材,根据列表可列方程如下:(z为一年基本运费,xij为i号生产地向j号销售地运输量)123451312824-35231432824313-33363226minz=31

8、x1+28x2+24x3+55x4+35x5+31x6+43x7+28x8+24x9+31x10+59x11+33x12+36x13+32x14+26x15s.t. x1 + x2 + x3 + x4 + x5 15x6 + x7 + x8 + x9 + x10 20x11 + x12 + x13 + x14 + x15 linp3A=1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0;0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0;0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1;1 0 0 0 0 1 0 0 0 0 1 0

9、 0 0 0 0 0 0;0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0;0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0;0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0;0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0b=15;20;1500;11;12;9;10;800c=31 28 24 55 35 31 43 28 24 31 59 33 36 32 26 0 0 0中间运行结果省略。已找到最优解!最优可行解为:x = 1 5 9 0 0 10 0 0 10 0 0 7 0 0 800 0 0

10、693最优值为:minf = 21968最优解对应的单纯形表为:optmatrx = Columns 1 through 7 0 0 0 -31 -14 0 -15 0 1 0 0 1 0 1 1 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 1 1 0 0 0 0 1 0 0 Columns 8 through 14 -4 0 -10 -23 0 -7 -3 0 0 1 -1 0 -1 -1 -1 0 -1 1 0 0 1 0 0 0 0 0 0 0 0 0 -1 1 1 1

11、1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 -1 0 0 1 0 0 0 0 Columns 15 through 19 0 -5 -5 0 21968 0 1 1 0 5 0 0 -1 0 1 0 1 1 1 693 0 -1 -1 0 7 0 0 0 0 9 0 0 0 0 10 0 0 1 0 10 1 0 0 0 800题目可知,轮船的预计使用期限为30年,年金成本是当年投入资金的十分之一。为使总年金成本最小,还需加上对轮船的资金投入,对轮船的单位资金投入如下表:123451275303238-28522933182702502653-28327

12、5268240因总年金成本含有运输成本以及年金成本,所以有:W=min*(1.10+1.11+1.12+1.129)+minw*1.129min为上述程序算出的最小运费为21968千美元,minw为上述程序算出最优解时要用到的线路的最初投入钱数的总和。W为最后30年所需总年金成本。所需线路如下:123451需要需要需要-2需要-需要-3-需要-需要根据计算得到最后结果为w=3643460千美元(30年)情况三:根据在每一条特定的路线上哪种方式的运输成本比较低来选择使用火车还是轮船来运输木材。假设每一条线路所需运输货物一吨,比较该路的水路和火车30年所需总费用,选取最小方式为该路的运输方式。当没

13、有水路时,则只能选取火车方式,可列式子如下:Tij= P1ij*(1.10+1.11+1.12+1.129)Qij= P2ij *(1.10+1.11+1.12+1.129)+ PCij*1.129Tij、Qij分别表示火车或轮船从i号生产地向j号销售地每年运输一吨,30年总共所需钱数。P1ij、P2ij分别表示火车、轮船在该线路的单位运输费,PCij为该线路最初对轮船投入的钱数。进行比较后的结果如下:123451轮船轮船火车火车轮船2轮船轮船轮船轮船火车3火车轮船轮船轮船轮船由于选取线路时,假设只运输一吨货物,但实际比非如此。火车所需费用只有运输费,而轮船除运输费外,还有最初对轮船投入的钱(

14、此值固定不变)。随着运输吨数的变化。用火车和轮船所需费用也会发生变化,因此之间的差距也会改变。由于假设货物为一吨,当选轮船时,是因为轮船的总体费用就比火车的小,则这条线路选轮船就最省,当选火车时,火车的线路由于运输的吨数小暂时比轮船的大,但随着吨数增加,可能轮船会在某一运输值后,比火车更省钱。综合上情况,选火车线路(可选轮船线路)也可假定轮船,固有下七种方案:123451轮船轮船火车火车轮船2轮船轮船轮船轮船火车3火车轮船轮船轮船火车123451轮船轮船轮船火车轮船2轮船轮船轮船轮船火车3火车轮船轮船轮船火车123451轮船轮船火车火车轮船2轮船轮船轮船轮船轮船3火车轮船轮船轮船火车12345

15、1轮船轮船火车火车轮船2轮船轮船轮船轮船火车3火车轮船轮船轮船轮船123451轮船轮船轮船火车轮船2轮船轮船轮船轮船轮船3火车轮船轮船轮船火车123451轮船轮船轮船火车轮船2轮船轮船轮船轮船火车3火车轮船轮船轮船轮船123451轮船轮船火车火车轮船2轮船轮船轮船轮船轮船3火车轮船轮船轮船轮船选取方案四为例: 故列出如下方程:minz=31x1+28x2+45x3+55x4+35x5+31x6+43x7+28x8+24x9+56x10+59x11+33x12+36x13+32x14+26x15s.t. x1 + x2 + x3 + x4 + x5 15x6 + x7 + x8 + x9 + x

16、10 20x11 + x12 + x13 + x14 + x15 1500x1 + x6 + x11 = 11x2 + x7 + x12 = 12x3 + x8 + x13 = 9x4 + x9 + x14 = 10x5 + x10 + x15 = 800xj 0, j = 1,15运行结果如下:已找到最优解!最优可行解为:x = 10 5 0 0 0 1 0 9 10 0 0 7 0 0 800 0 0 693最优值为:minf = 22004最优解对应的单纯形表为:optmatrx = Columns 1 through 7 0 0 -17 -31 -14 0 -15 1 0 1 1 0

17、0 -1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 Columns 8 through 14 0 0 -35 -23 0 -3 -3 0 0 -1 1 0 1 1 0 0 -1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 -1 -1 0 0 1 -1 0 -1 -1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 Columns 15 through 19 0 -5 -5 0 22

18、004 0 0 -1 0 10 0 -1 -1 0 7 0 1 1 1 693 0 0 1 0 1 0 1 1 0 5 0 0 0 0 10 0 0 0 0 9 1 0 0 0 800与情况二同理,当线路用轮船时,需要计算该线路投入轮船的本金。对轮船的单位资金投入如下表:123451275303238-28522933182702502653-283275268240因总年金成本含有运输成本以及年金成本,固有式子:W=min*(1.10+1.11+1.12+1.129)+minp*1.129min为上述程序算出的最小运费为22004千美元,minp为上述程序算出最优解时要用到轮船的线路的最初投入钱数的总和。W为最后30年所需总年金成本。所需轮船线路如下:123451轮船轮船-2轮船-轮船轮船-3-轮船-轮船根据计算得到最后结果为w=3649890千美元(30年)按照方案四,算出其他六种方案的最后结果:方案一:w=6392880千美元方案二:w=6392880千美元方案三:w=6377800千美元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论