




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级八年级 上册上册 11.3 多边形及其内角和多边形及其内角和 (第(第1课时)课时) 课件说明课件说明 本课是在学生已经学习了三角形的有关概念和性质本课是在学生已经学习了三角形的有关概念和性质 的基础上,利用学习三角形的经验方法进一步研究的基础上,利用学习三角形的经验方法进一步研究 多边形的有关概念和性质多边形的有关概念和性质 学习目标:学习目标: 1了解多边形的有关概念,感悟类比方法的价值了解多边形的有关概念,感悟类比方法的价值 2探索并证明多边形内角和公式,体会化归思想和探索并证明多边形内角和公式,体会化归思想和 从具体到抽象的研究问题方法从具体到抽象的研究问题方法 3运用多边形内角
2、和公式解决简单问题运用多边形内角和公式解决简单问题 学习重点:学习重点: 多边形内角和公式的探索与证明过程多边形内角和公式的探索与证明过程 课件说明课件说明 创设情境,导入新知创设情境,导入新知 问题你能从图中想象出几个由一些线段围成的图问题你能从图中想象出几个由一些线段围成的图 形吗?形吗? 创设情境,导入新知创设情境,导入新知 多边形的定义:多边形的定义: 在平面内在平面内,由一些线段,由一些线段首尾顺次首尾顺次相接组成的相接组成的封闭图封闭图 形形叫做多边形叫做多边形. . 创设情境,导入新知创设情境,导入新知 如图,从五边形如图,从五边形ABCDE 的顶点的顶点A 出发共有几条对出发共
3、有几条对 角线?这个五边形共有几条对角线?请画出它们。角线?这个五边形共有几条对角线?请画出它们。 A B CD E 凸四边形凸四边形 创设情境,导入新知创设情境,导入新知 观察你能说出这两个图形的异同点吗?观察你能说出这两个图形的异同点吗? A B CDB D C A 凹多边形凹多边形 创设情境,导入新知创设情境,导入新知 想一想正方形的边、角有什么特点?想一想正方形的边、角有什么特点? 各个角都相等,各条边都相等的多边形叫做正多边形各个角都相等,各条边都相等的多边形叫做正多边形 回忆长方形、正方形的内角和等于回忆长方形、正方形的内角和等于_._.360 创设情境,导入新知创设情境,导入新知
4、 思考任意一个四边形的内角和是否也等于思考任意一个四边形的内角和是否也等于360 呢?呢? 动手操作,探究新知动手操作,探究新知 探究你能利用三角形内角和定理证明你的结论探究你能利用三角形内角和定理证明你的结论 吗?吗?证明:证明:连接连接AC, BAD + +B + +BCD + +D = =(BAC + +BCA + +B) + + (DAC + +DCA + +D), = = 180 + + 180 = = 360 A B C D 动手操作,探究新知动手操作,探究新知 探究你能利用三角形内角和定理证明你的结论探究你能利用三角形内角和定理证明你的结论 吗?吗?从四边形的一个顶点出从四边形的
5、一个顶点出 发,发, 可以作可以作_条对角线,它们条对角线,它们 将将 四边形分为四边形分为个三角个三角 形,形, 四边形的内角和等于四边形的内角和等于 180_=_= 1 2 2360 A B C D A B C D E 动手操作,探究新知动手操作,探究新知 探究类比前面的过程,你能探索五边形的内角和探究类比前面的过程,你能探索五边形的内角和 吗?六边形呢?吗?六边形呢?如图,从五边形的一个如图,从五边形的一个 顶点顶点 出发,可以作出发,可以作条对角线,条对角线, 它它 们将五边形分为们将五边形分为_个三角个三角 形,形, 五边形的内角和等于五边形的内角和等于 180= = 2 3 354
6、0 动手操作,探究新知动手操作,探究新知 如图,从六边形的一个如图,从六边形的一个 顶点出发,可以作顶点出发,可以作_条条 对角线,它们将六边形分为对角线,它们将六边形分为 _个三角形,六边形的个三角形,六边形的 内角和等于内角和等于 180_=_=_ 3 4 4720C A B D E F 从从n 边形的一个顶点出发,可以作(边形的一个顶点出发,可以作(n - -3)条对角)条对角 线,它们将线,它们将n 边形分为(边形分为(n - -2)个三角形,这()个三角形,这(n - -2) 个三角形的内角和就是个三角形的内角和就是n 边形的边形的内角内角和,所以和,所以,n 边形边形 的内角和等于
7、(的内角和等于(n - -2)180 归纳总结,获得新知归纳总结,获得新知 思考你能从四边形、五边形、六边形的内角和的思考你能从四边形、五边形、六边形的内角和的 研究过程获得启发,发现多边形的内角和与边数的关系研究过程获得启发,发现多边形的内角和与边数的关系 吗?吗?能证明你发现的结论吗?能证明你发现的结论吗? n 边形边形 六边形六边形 五边形五边形 四边形四边形 三角形三角形 多边形内角和多边形内角和 分割出三角分割出三角 形的个数形的个数 从多边形的一个顶点从多边形的一个顶点 引出的对角线条数引出的对角线条数 图形图形边数边数 归纳总结,梳理新知归纳总结,梳理新知 03 -3 = = 4
8、 -3 = = 5 -3 = = 6 -3 = = n -3 1 2 3 3 -2 = = 1 4 -2 = = 2 5 -2 = = 3 6 -2 = = 4 n -2 ( n -2 )180 180 360 540 720 1 440 8 动脑思考,例题解析动脑思考,例题解析 例例1 填空:填空: (1)十边形的内角和为)十边形的内角和为 度度 (2)已知一个多边形的内角和为)已知一个多边形的内角和为1 080,则它的边数,则它的边数 为为_ 解:解:如图,四边形如图,四边形ABCD 中中, A + +C = =180 A + +B + +C + +D = =(4 - 2)180 =360, B + +D = =360- -(A + + C) = =360- 180 = =180 动脑思考,例题解析动脑思考,例题解析 例例2如果一个四边形的一组对角互补,那么另一如果一个四边形的一组对角互补,那么另一 组对角有什么关系?组对角有什么关系? AB C D 如果四边形的一组对角互补,那么另一组对角也互补如果四边形的一组对角互补,那么另一组对角也互补. . (1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容? (2)我们
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度光伏系统设计服务合同
- 2025版FYZPCG绿色能源项目投资合作协议
- 二零二五年度太阳能产品oem代加工技术合同
- 二零二五年软件开发IT外包专项合同
- 2025应急响应灾害救援物资快速运输合同
- 二零二五年度安防设施运维与安全保障合同
- 2025年度IT项目管理外包合同包含进度监控与质量控制
- 二零二五年度25MW柴油发电机电站电力储能设施建设合同
- 2025版餐饮saas管理系统销售与服务协议
- 2025年度医药行业员工劳动合同范本及劳动保护措施
- 2015年版干部履历表
- 变速箱厂总平面布置设计设施规划与物流分析课程设计
- NB/T 10756-2021煤矿在用无轨胶轮车安全检测检验规范
- GB/T 31586.2-2015防护涂料体系对钢结构的防腐蚀保护涂层附着力/内聚力(破坏强度)的评定和验收准则第2部分:划格试验和划叉试验
- 2023年上海高考生物真题试卷(答案解析版)
- 临床各科急救流程规范规范图
- 交安工程劳务分包参考价格(范本)
- 2022年专业技术人员继续教育公需课题库(含答案)
- GB∕T 13554-2020 高效空气过滤器
- (新版)孤残儿童试题库(含答案)
- 普通生物学说课(张艳丽)
评论
0/150
提交评论