版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、福建省普通高中学业水平合格性考试数学试卷(二)(考试时间:90分钟 满分:100分)本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至4页,第卷5至6页.考生注意:1.答题前,考生务必将自己的考生号、姓名填写在试题卷答题卡上.考生要认真核对答题卡上粘贴的条形码的“考生号、姓名”与考生本人考生号、姓名是否一致.2.第卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.第卷用黑色字迹签字笔在答题卡上作答.在试题卷上作答,答案无效.3.考试结束,监考员将试题卷和答题卡一并收回.第卷(选择题45分)一、选择题(本大题有15小题,每小题3
2、分,共45分.每小题只有一个选项符合题目要求)1. 设集合,2,3,则( )A. ,2,3,B. ,2,C. ,3,D. ,3,【答案】A【解析】【分析】直接由并集的运算可得答案.【详解】,2,3,2,3,.故选:A【点睛】考查集合的并集运算,属于基础题.2. 下列函数中,在区间上单调递增的是( )A. B. C. D. 【答案】A【解析】【分析】根据解析式直接判断出单调性即可.【详解】可知在区间上单调递增,故A正确;和在上单调递减,故BC错误;是常数函数,不单调,故D错误.故选:A.3. 在等差数列中,,则( )A. 5B. 8C. 10D. 14【答案】B【解析】试题分析:设等差数列的公差
3、为,由题设知,所以,所以,故选B.考点:等差数列通项公式.4. 已知向量,则( )A. B. C. D. 【答案】A【解析】【分析】利用即可求出.【详解】,.故选:A.5. 若ab0,cdB. D. b0,利用不等式的性质可得,得到结果,也可以利用特值法代入得到结果.【详解】方法1:cdd0,又ab0,.故选:D.方法2:令a3,b2,c3,d2.则1,1,排除选项A,B.又,排除选项C.故选:D.【点睛】该题考查的是有关不等式的问题,涉及到的知识点有不等式的性质,属于基础题目.6. 已知互相垂直的平面交于直线l.若直线m,n满足m,n,则A. mlB. mnC. nlD. mn【答案】C【解
4、析】试题分析:由题意知,故选C【考点】空间点、线、面的位置关系【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系7. 设是等比数列,下列说法一定正确的是( )A. 成等比数列B. 成等比数列C. 成等比数列D. 成等比数列【答案】D【解析】 项中,故项说法错误;项中,故项说法错误; 项中,故项说法错误;故项中,故项说法正确,故选D.8. 在轴上与点的距离为3的点是( )A. B. C. D. 和【答案】D【解析】【分析】设出点坐标,根据空间两点间坐标公式即可求出.【详解】设所求点的坐标为,则由题可得,解得或1,故在轴上与点的
5、距离为3的点是或.故选:D.9. 设,若,则( )A. 2B. 4C. 6D. 8【答案】A【解析】【分析】分和两种情况代入解析式求解.【详解】当时,解得,不符合,当时,解得,符合,.故选:A.10. 若,则( )A. B. C. D. 【答案】A【解析】【分析】由两角差的正切公式计算详解】由题意故选:A【点睛】本题考查两角差的正切公式,属于基础题11. 在长方体中,则异面直线与所成角的余弦值为A. B. C. D. 【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果详解:以D为坐标原点,DA,DC,DD1为x,y,
6、z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.12. 若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A. B. C. D. 【答案】B【解析】试题分析:本题是几何概型问题,矩形面积2,半圆面积,所以质点落在以AB为直径的半圆内的概率是,故选B考点:几何概型13. 在中,分別为内角,所対边的边
7、长,若,则的值是( )A. 3B. 6C. 9D. 12【答案】B【解析】【分析】由题可得,再结合余弦定理可求出.【详解】,即,由余弦定理得,解得.故选:B.14. 平行于直线且与圆相切的直线的方程是( )A. 或B. 或C. 或D. 或【答案】A【解析】设所求直线为,由直线与圆相切得,解得所以直线方程为或选A.15. 在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是26.7,天狼星的星等是1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 【答案】A【解析】
8、【分析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识信息处理能力阅读理解能力以及指数对数运算.第卷(非选择题55分)二、填空题(本大题共5小题,每小题3分,共15分)16. 已知一组数据6,7,8,8,9,10,则该组数据的方差是_.【答案】.【解析】【分析】由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为,所以该组数据的方差是.【点睛】本题主要考查方差的计算公式,属于基础题.17. 不等式的解集为_.【答案】【解析】【分析】运用绝对值解法求解,将结果写成集
9、合即可.【详解】解:由得,即所以不等式的解集为.故答案为:.【点睛】解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.18. 已知函数,则函数的零点个数为_.【答案】3【解析】【分析】根据函数零点定义,在分段函数的每一段求得零点,加起来就是零点的个数.【详解】解:当时,令得或(舍掉),当时,令得或,所以函数的零点个数为3个.故答案为:3.【点睛】函数零点个数的判定有下列几种方法:(1)直接求零点:令,如果能求出解,那么
10、有几个解就有几个零点;(2)零点存在性定理:利用该定理不仅要求函数在上是连续的曲线,且,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点;(3)画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.19. 已知函数的图象关于直线对称,则的值是_【答案】.【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A0,0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.20. 要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每
11、平方米10元,则该容器的最低总造价是_(单位:元)【答案】160【解析】【分析】本题根据题意建立函数关系式,再运用基本不等式求最值即可.【详解】设该容器的总造价为元,长方体的底面矩形的长,因为无盖长方体的容积为,高为,所以长方体的底面矩形的宽为,依题意,得故答案为:160【点睛】本题考查实际问题建立函数关系,基本不等式求最值问题,是中档题.三、解答题(本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤)21. 计算:.【答案】【解析】【分析】根据指数幂和对数运算法则即可求出.【详解】解:原式.故答案为:.22. 已知点、.(1)求直线的方程,并判断直线的倾斜角是锐角还是钝角;(2
12、)若点在轴上,且,求面积.【答案】(1),直线的倾斜角为钝角;(2).【解析】【分析】(1)求出直线的斜率,利用点斜式可得出直线的方程,根据直线斜率可得出结论;(2)设点,由题意可得,利用斜率公式可求得的值,然后求出、,利用三角形的面积公式可求得的面积.【详解】(1),所以,直线的方程为,即,又,所以,直线的倾斜角为钝角;(2)设点的坐标为.,即,所以,即.,因此,.23. 如图,四棱锥中,点是底面正方形的中心,平面,点在棱上.(1)若是的中点,求证:平面;(2)求证:平面平面【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据三角形中位线定理,结合线面平行的判定定理进行证明
13、即可;(2)根据线面垂直的判定定理,结合面面垂直的判定定理进行证明即可.【详解】证明:(1)连接.是的中点,是的中点,又平面,平面,平面.(2)平面,平面.又是正方形,平面,平面,且,平面,平面,平面平面.24. 在中,.(1)求,的值;(2)求的值.【答案】(1);(2).【解析】【分析】(1)由余弦定理结合已知即可求出;(2)求出,根据正弦定理求出,即求出.【详解】解:(1)由余弦定理,得.因为,所以.解得,(2)由得.由正弦定理得.在中,.所以.25. 中华人民共和国关于(环境空气质量指数()技术规定(试行)(HJ633-2012)中.关于空气质量指数的划分如下表所示:05050100100150150200200300级别级级级级级级类别优良轻度污染中度污染重度污染严重污染某市为了监测该市的空气质量指数,抽取一年中天的数据进行分析,得到如下频率分布表及频率分布直方图:分组频数频率0.06100.220150.320.04合计1(1)求、和的值;(2)利用样本估计总体的思想,估计该市一年中空气质量指数的平均数为多少;(3)该市政府计划通过对环境进行综合治理,使得今后每年的空气质量指数比上一年降低,至少经过多少年后该市的空气质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年黔西南州辅警协警招聘考试备考题库及答案详解(夺冠)
- 2025年邯郸辅警招聘考试真题及参考答案详解一套
- 2025年淮安辅警协警招聘考试备考题库及答案详解(易错题)
- 2025年钦州辅警招聘考试题库含答案详解(新)
- 2025年辽宁辅警招聘考试真题附答案详解(综合题)
- 2025年湖州辅警协警招聘考试真题附答案详解(模拟题)
- 2025年淮北辅警协警招聘考试备考题库附答案详解(综合题)
- 2025年邵阳辅警招聘考试题库及答案详解(考点梳理)
- 2025年青海辅警招聘考试题库含答案详解(精练)
- 2025年贵阳辅警招聘考试题库及答案详解(易错题)
- 《讲师授课技巧》课件111
- 重难点31 立体几何压轴小题(轨迹与最值)十四大题型【2024高考数学二轮复习题型突破】(解析版)
- 2024年康复治疗学:专业与创新
- 草料库房设计方案
- 2024年山东省公务员录用考试《行测》真题及答案解析
- 2024−2025学年高一上学期期中考试数学试题含答案
- 餐饮与单位用餐协议书模板
- 2022年10MW级海上风电机组技术
- 2023年全国职业院校技能大赛-融媒体内容策划与制作赛项规程
- ISO27001:2022信息安全管理手册+全套程序文件+表单
- 2024年防灾减灾日人人讲安全个个会应急着力提升基层防灾避险能力课件
评论
0/150
提交评论