




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、如果您需要使用本文档,请点击下载按钮下载!高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 3. 注意下列性质: 要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,an,都有2种选择,所以,总共有种选择, 即集合A有个子集。当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为 (3)德
2、摩根定律:有些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。7. 对映射的概念了解吗?映射f:AB,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。)注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。如:若,;问:到的映射有 个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。函数的图象与直线交点的个数为 个。1 / 16如果您需要使用本文档,请点击下载按钮下载! 8. 函数的三要素是什么?如何比较两个函数是否相同? (定
3、义域、对应法则、值域)相同函数的判断方法:表达式相同;定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法:l 分式中的分母不为零;l 偶次方根下的数(或式)大于或等于零;10. 如何求复合函数的定义域? 义域是_。 例 若函数的定义域为,则 的定义域为 。11、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 求函数y=的值域2、配方法配方法是求二次函数值域最基本的方法之一。例、求函数y=-2x+5,x-1,2的值域。3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不
4、必拘泥在判别式上面2 / 16如果您需要使用本文档,请点击下载按钮下载!5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 求函数y=x+的值域。8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏
5、心悦目。例:求函数y=+的值域。3 / 16如果您需要使用本文档,请点击下载按钮下载!倒数法有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况例 求函数y=的值域12. 求一个函数的解析式时,注明函数的定义域了吗? 切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂 15 . 如何用定义证明函数的单调性? (取值、作差、判正负)判断函数单调性的方法有三种:(1)定义法:根据定义,设任意得x1,x2,找出f(x1),f(x2)之间的大小关系可以变形为求的正负号或者与1的关系(2)参照图象:若函数f(x)的图象关
6、于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有相同的单调性; (特例:奇函数)若函数f(x)的图象关于直线xa对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。(特例:偶函数)(3)利用单调函数的性质:函数f(x)与f(x)c(c是常数)是同向变化的函数f(x)与cf(x)(c是常数),当c0时,它们是同向变化的;当c0时,它们是反向变化的。如果函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;(函数相加)如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变
7、化,则函数f1(x)f2(x)和它们反向变化;(函数相乘)函数f(x)与在f(x)的同号区间里反向变化。若函数u(x),x,与函数yF(u),u(),()或u(),()同向变化,则在,上复合函数yF(x)是递增的;若函数u(x),x,与函数yF(u),u(),()或u(),()反向变化,则在,上复合函数yF(x)是递减的。(同增异减)若函数yf(x)是严格单调的,则其反函数xf1(y)也是严格单调的,而且,它们的增减性相同。f(g)g(x)fg(x)f(x)+g(x)f(x)*g(x) 都是正数5 / 16如果您需要使用本文档,请点击下载按钮下载!增增增增增增减减/减增减/减减增减减 17.
8、函数f(x)具有奇偶性的条件是什么? (f(x)定义域关于原点对称) 注意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。 (3)f(x)是定义域在(-6,0),(0,6)上的奇函数,若x0时f(x)= 求x0时f(x)判断函数奇偶性的方法一、 定义域法一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.二、 奇偶函数定义法在给定函数的定义域关于原点对称的前提下,计算,然后根据函数的奇偶性的定义判断其奇偶性.三、 复合函数奇偶性f(g)g(x
9、)fg(x)f(x)+g(x)f(x)*g(x)奇奇奇奇偶奇偶偶非奇非偶奇偶奇偶非奇非偶奇6 / 16如果您需要使用本文档,请点击下载按钮下载!偶偶偶偶偶18.函数,T是一个周期。) 我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这个函数周期2t. 推导:,同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称, 对称轴可以由括号内的2个数字相加再除以2得到。比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a对称。 如:
10、 19. 你掌握常用的图象变换了吗? 联想点(x,y),(-x,y)6 / 16如果您需要使用本文档,请点击下载按钮下载! 联想点(x,y),(x,-y) 联想点(x,y),(-x,-y) 联想点(x,y),(y,x) 联想点(x,y),(2a-x,y) 联想点(x,y),(2a-x,0) 注意如下“翻折”变换: 19. (k为斜率,b为直线与y轴的交点) 的双曲线。 7 / 16如果您需要使用本文档,请点击下载按钮下载! 应用:“三个二次”(二次函数、二次方程、二次不等式)的关系二次方程求闭区间m,n上的最值。 求区间定(动),对称轴动(定)的最值问题。 一元二次方程根的分布问题。 8 /
11、16如果您需要使用本文档,请点击下载按钮下载! 利用它的单调性求最值21. 如何解抽象函数问题? (赋值法、结构变换法) 9 / 16如果您需要使用本文档,请点击下载按钮下载! (对于这种抽象函数的题目,其实简单得都可以直接用死记了1、 代y=x,2、 令x=0或1来求出f(0)或f(1)3、 求奇偶性,令y=x;求单调性:令x+y=x1 几类常见的抽象函数 1. 正比例函数型的抽象函数 f(x)kx(k0)-f(xy)f(x)f(y)2. 幂函数型的抽象函数 f(x)xa-f(xy) f(x)f(y);f()例1已知函数f(x)对任意实数x、y均有f(xy)f(x)f(y),且当x0时,f(
12、x)0,f(1) 2求f(x)在区间2,1上的值域.例2已知函数f(x)对任意实数x、y均有f(xy)2f(x)f(y),且当x0时,f(x)2,f(3) 5,求不等式 f(a22a2)0,xN;f(ab) f(a)f(b),a、bN;f(2)4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.10 / 16如果您需要使用本文档,请点击下载按钮下载!例6设f(x)是定义在(0,)上的单调增函数,满足f(xy)f(x)f(y),f(3)1,求:(1) f(1);(2) 若f(x)f(x8)2,求x的取值范围.例7设函数y f(x)的反函数是yg(x).如果f(ab)f(a)f(b),
13、那么g(ab)g(a)g(b)是否正确,试说明理由. 例9已知函数f(x)(x0)满足f(xy)f(x)f(y),(1) 求证:f(1)f(1)0;(2) 求证:f(x)为偶函数;(3) 若f(x)在(0,)上是增函数,解不等式f(x)f(x)0.例10已知函数f(x)对一切实数x、y满足f(0)0,f(xy)f(x)f(y),且当x0时,f(x)1,求证:(1) 当x0时,0f(x)1;(2) f(x)在xR上是减函数.练习题:1.已知:f(xy)f(x)f(y)对任意实数x、y都成立,则( )(A)f(0)0 (B)f(0)1 (C)f(0)0或1 (D)以上都不对2. 若对任意实数x、y
14、总有f(xy)f(x)f(y),则下列各式中错误的是( )(A)f(1)0 (B)f() f(x) (C)f() f(x)f(y) (D)f(xn)nf(x)(nN)3.已知函数f(x)对一切实数x、y满足:f(0)0,f(xy)f(x)f(y),且当x0时,f(x)1,则当x0时,f(x)的取值范围是( )(A)(1,) (B)(,1)(C)(0,1) (D)(1,)4.函数f(x)定义域关于原点对称,且对定义域内不同的x1、x2都有f(x1x2),则f(x)为( )(A)奇函数非偶函数 (B)偶函数非奇函数(C)既是奇函数又是偶函数 (D)非奇非偶函数5.已知不恒为零的函数f(x)对任意实
15、数x、y满足f(xy)f(xy)2f(x)f(y),则函数f(x)是( )11 / 16如果您需要使用本文档,请点击下载按钮下载!(A)奇函数非偶函数 (B)偶函数非奇函数(C)既是奇函数又是偶函数 (D)非奇非偶函数函数1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(x)= ;(2)若f(x)是奇函数,0在其定义域内,则 (可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或 (f(x)0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函
16、数的有关问题(1)复合函数定义域求法:若已知 的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y
17、=-x+a)的对称曲线C2的方程为f(ya,x+a)=0(或f(y+a,x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2ax,2by)=0;(5)若函数y=f(x)对xR时,f(a+x)=f(ax)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(xa)与y=f(bx)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对xR时,f(x +a)=f(xa) 或f(x2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数;
18、(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对xR时,f(x+a)=f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.方程k=f(x)有解 kD(D为f(x)的值域);6.af(x) 恒成立 af(x)max,; af(x) 恒成立 af(x)min;7.(1) (a0,a1,b0,nR+); (2) l og a N= ( a0,a1,b0,b1);(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a0,a1,N0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 双方合资建房协议书3篇
- 建筑项目安全保障书3篇
- 安全责任计划员守卫3篇
- 二手车交易三方合约范本2篇
- 工程进度概述3篇
- 工程引孔施工3篇
- 工程设计施工合同范本的信息管理2篇
- 叉车销售协议样本3篇
- 园艺花木选购书3篇
- 学生保护文化遗产保证3篇
- 南京师范大学自主招生个人陈述范文与撰写要点
- 铁粉运输合同协议
- 计算机网络安全知识试题及答案2025年计算机二级考试
- 浙江省A9协作体2024-2025学年高二下学期4月期中联考语文试卷(含答案 )
- (四调)武汉市2025届高中毕业生四月调研考试 语文试卷(含答案详解)
- 广州广州市天河区华阳小学-毕业在即家校共话未来-六下期中家长会【课件】
- 第4单元 亮火虫(教学设计)-2024-2025学年粤教花城版(2024)音乐一年级下册
- 车间生产材料管理制度
- 西师大版小学五年级数学(下)期中测试题(含答案)
- 公司事故隐患内部报告奖励制度
- 大学生创新创业基础(创新创业课程)完整全套教学课件
评论
0/150
提交评论