




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学提高题(1)单点运动问题1.如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE(1)求证:DECEDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值【解答】:(1)证明:由矩形的性质可知ADCCEA,AD=CE,DC=EA,ACD=CAE,在ADE与CED中DECEDA(SSS);(2)解:如图1,ACD=CAE,AF=CF,设DF=x,则AF=CF=4x,在RTADF中,AD2+
2、DF2=AF2,即32+x2=(4x)2,解得;x=,即DF=(3)解:如图2,由矩形PQMN的性质得PQCA又CE=3,AC=5设PE=x(0x3),则,即PQ=过E作EGAC 于G,则PNEG,=又在RtAEC中,EGAC=AECE,解得EG=,即PN=(3x)设矩形PQMN的面积为S则S=PQPN=x2+4x=+3(0x3)所以当x=,即PE=时,矩形PQMN的面积最大,最大面积为3【思路】:(1)由矩形的性质可知ADCCEA,得出AD=CE,DC=EA,ACD=CAE,从而求得DECEDA;(2)根据勾股定理即可求得(3)有矩形PQMN的性质得PQCA,所以,从而求得PQ,由PNEG,
3、得出=,求得PN,然后根据矩形的面积公式求得解析式,即可求得2.如图1,已知点A(2,0),B(0,4),AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N设P运动的时间为t(0t2)秒(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设MNC与OAB重叠部分的面积为S试求S关于t的函数关系式;在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由【解答】解:(1)如答图1,过点C作CFx轴于点F,C
4、Ey轴于点E,由题意,易知四边形OECF为正方形,设正方形边长为xCEx轴,即,解得x=C点坐标为(,);PQAB,即,OP=2OQP(0,2t),Q(t,0)对称轴OC为第一象限的角平分线,对称点坐标为:M(2t,0),N(0,t)(2)当0t1时,如答图21所示,点M在线段OA上,重叠部分面积为SCMNSCMN=S四边形CMONSOMN=(SCOM+SCON)SOMN=(2t+t)2tt=t2+2t;当1t2时,如答图22所示,点M在OA的延长线上,设MN与AB交于点D,则重叠部分面积为SCDN设直线MN的解析式为y=kx+b,将M(2t,0)、N(0,t)代入得,解得,y=x+t;同理求得直线AB的解析式为:y=2x+4联立y=x+t与y=2x+4,求得点D的横坐标为SCDN=SBDNSBCN=(4t)(4t)=t22t+综上所述,S=画出函数图象,如答图23所示:观察图象,可知当t=1时,S有最大值,最大值为1【思路】:(1)如答图1,作辅助线,由比例式求出点D的坐标;(2)所求函数关系式为分段函数,需要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院信息管理系统的设计与实施
- 医疗信息安全管理体系构建与实践
- 医疗信息系统中基于区块链的薪酬激励模式
- 区块链助力金融交易流程优化探讨
- 从临床到研究化学实验室的创新实践
- 本科毕业生实习总结模版
- 区块链技术在数据安全与隐私保护的应用
- 女娲补天(教学设计)
- 范稿模板17财务出纳年终工作总结模版
- 买卖小商铺合同范例
- DB11∕T 1513-2018 城市绿地鸟类栖息地营造及恢复技术规范
- 综合实践课件高中
- 工程质量检测监理制度
- DISC性格与能力测试题及答案解析
- 《创意改善生活》课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 校长思政课课件-百年奥运
- 2024至2030年中国高速AOI市场占有率调查及投资价值评估报告
- 谏逐客书-同步练习 高一下学期语文文言文阅读 (统编版必修下册)
- 汽车保养与洗车行业并购与重组研究
- 《重大疾病保险的疾病定义使用规范修订版》
- (正式版)CB∕T 4550-2024 船舶行业企业安全设备设施管理规定
评论
0/150
提交评论