




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、结构动力学 第四章 单自由度体系对 简谐和周期荷载的反应 单自由度体系对简谐荷载作用下的反应是 结构动力学中的一个经典内容。 不仅工程中实际存在这种形式的荷载,而 且简谐荷载作用下单自由度体系的解提 供了了解结构动力特性和用于分析更复 杂荷载作用反应的手段和方法。 4.1 无阻尼体系的简谐振动 运动方程: 其中:p0 简谐荷载的幅值; 简谐荷载的圆频率。 初始条件 : tpkuumsin 0 )0(,)0( 00 uuuu tt 4.1 无阻尼体系的简谐振动 运动方程是带有初值条件的二阶常微分方程, 全解=齐次方程的通解+特解 通解对应的方程是一个自由振动方程,其解uc 为无阻尼自由振动: c
2、 - complementary tpkuumsin 0 mk tBtAtu n nnc / sincos)( 4.1 无阻尼体系的简谐振动 特解满足运动方程的解,记为up(t) ,是由动 荷载p0sint直接引起的振动解。 设特解为: 其中,/n频率比,外荷载的激振频率与结 构自振频率之比 ; pparticular tpkuumsin 0 tDtCtu p cossin)( 0 , )/(1 1 2 0 D k p C n 4.1 无阻尼体系的简谐振动 全解=通解+特解 待定系数A、B由初值条件确定 t k p tBtA tututu n nn pc sin )/(1 1 sincos )
3、()()( 2 0 2 0 )/(1 /)0( )0( n n n k pu B uA )0( )0( 0 0 uu uu t t 4.1 无阻尼体系的简谐振动 满足初始条件的解 : 瞬态反应和稳态反应 t k p t k pu tutu n n n n n n sin )/(1 1 sin )/(1 /)0( cos)0()( 2 0 2 0 瞬态反应 稳态反应 4.1 无阻尼体系的简谐振动 稳态反应 : u0稳态反应的振幅: ust等效静位移,或静位移: Rd动力放大系数: t k p tu n sin )/(1 1 )( 2 0 k p u st 0 2 0 0 )/(1 1 n k p
4、 u 2 0 )/(1 1 n st d u u R 4.1 无阻尼体系的简谐振动 无阻尼体系动力放大系数 =0 ,Rd =1 =n,Rd 发生共振 /n2, Rd1 2 0 )/(1 1 n st d u u R 4.1 无阻尼体系的简谐振动 无阻尼体系共振时动力反应时程 共振时(=n): ( )cos 2 st pnn u uttt 4.2 有阻尼体系的简谐振动 运动方程: 初始条件: 利用c=2mn,并将运动方程两边同除m, 得到如下形式的运动方程: tpkuucumsin 0 )0(,)0( 00 uuuu tt t m p uuu nn sin2 0 2 4.2 有阻尼体系的简谐振动
5、 通解uc对应于有阻尼自由振动反应: 特解up可以设为如下形式 : t m p uuu nn sin2 0 2 )sincos()(tBtAetu DD t c n tDtCtu p cossin)( 0cos)(2sin2)( 2 2 0 2 2 tDCt m p DC nnnn 4.2 有阻尼体系的简谐振动 运动方程的全解:u(t)=uc+up : 222 222 2 )/(2)/(1 /2 )/(2)/(1 )/(1 nn n st nn n st uD uC 0)(1)2( )2()(1 2 2 DC uDC nn st nn tDtCtBtAetu DD t n cossin)sin
6、cos()( 4.2 有阻尼体系的简谐振动 有初始条件影响的动力反应时程 4.2 有阻尼体系的简谐振动 (1)共振反应(=n) 满足零初始条件 运动解: 当=0时 : 与无阻尼时的结果完全相同 222 222 2 )/(2)/(1 /2 )/(2)/(1 )/(1 nn n st nn n st uD uC 2 ,0 st u DC stst uBuA 2 12 1 , 2 1 ttte u tu nDD t st n cos)sin 1 (cos 2 )( 2 tt u tu nn st cos 2 )( t u tBtAetu st DD t n cos 2 )sincos()( (1)有
7、阻尼体系的共振反应(=n) 有阻尼体系共振反应时程 4.2 有阻尼体系的简谐振动 (2)动力放大系数Rd(dynamic magnification factor) 振动的稳态解: u0 稳态振动的振幅 相角,反映体系振动位移与简谐荷载的相位关系 )sin(cossin)( 0 tutDtCtu )(tan, 122 0 C D DCu 2 1 222 0 )/(1 )/(2 tan )/(2)/(1 1 n n nn st uu 222 222 2 )/(2 )/(1 /2 )/(2 )/(1 )/(1 nn n st nn n st uD uC 静位移 k p ust 0 动力放大系数定义
8、为 : 222 0 )/(2)/(1 1 nn st uu st d u u R 0 222 )/(2)/(1 1 nn d R 222 )/(2)/(1 1 nn d R (1) 当 2 1 时,1 d R,即体系不发生放大反应。 (2) 当 2 1 时, 2 2 max 21)(, 12 1 )( 峰值 n d R。 (3) 当1/ n (共振时) , 2 1 d R。 (4) 当2/ n 时,1 d R,对任意 均成立。 4.2 有阻尼体系的简谐振动 (3)阻尼体系动力反应与荷载的相位关系 在动力荷载的作用下,有阻尼体系的动力反应 (位移)一定要滞后动力荷载一段时间,即存 在反应滞后现象
9、。 这个滞后的时间即由相角反映,如果滞后时间 为t0,则= t0 (t0=/)。 由计算的公式可知,滞后的相角与频率比/n 和阻尼大小均有关系。 2 1 )/(1 )/(2 tan n n (3)阻尼体系动力反应与荷载的相位关系 右图给出阻尼比=0.2时, 相应于不同频率比/n 时的外力和位移曲线及滞 后相角。相角实际是 反映结构体系位移(反应) 相应于动力荷载的反应滞 后时间,从图中可以发现, 频率比越大,即外荷载作 用得越快,动力反应的滞 后时间越长。 (3)阻尼体系动力反应与荷载的相位关系 (3)阻尼体系动力反应与荷载的相位关系 表 4.1 三种特殊情况时体系振动位移与简谐荷载的相位关系
10、 由 n /图判断 物理解释 (根据关系:uufufuf ICS 2 , ) 0/ n 时 0 0则 u 和0 u ,即 c f和0 I f 则)(tpf S 即)(tpku ,u与)(tp相位相同 1/ n 时 90 90)()(90 (),()( 0, 2 相差,则相差 与)相同,而与即则 则 tptu uutputpuctpf fffkuumumf c SIsnI n /时 180 180180)( )(, ,则相差位移反相,所以位移与 ,而惯性力与则和,则 tp tpffff IcSI 4.3 振动测量仪器(拾振仪) 测量振动量仪器主要有三种: 加速度计:测量加速度时程(强震仪) 位移
11、计:测量位移时程(地震仪) 速度计:测量速度(目前应用逐步多起来) 4.3 振动测量仪器(拾振仪) (1)加速度计(强震仪) 加速度计测量的是加速度 在基底加速度作用下仪器质点的运动方程为: 设仪器基底加速度时程: 仪器质点所记录的相对位移u(t)为: )(tumkuucum g tutu gg sin)( 0 )sin( )sin( )/(2)/(1 1 )( 0 222 0 tuR k m t k um tu gd nn g (1)加速度计(强震仪) 为简单起见,仅讨论u(t)的振幅u0 : 通常采用提高加速度计中弹簧刚度的方法来实现提高n的目的。 因此,加速度计或强震仪中弹簧刚度比较大,
12、是比较刚性的。 00 )( gd uR k m u 0/0.6 n mk n / 0.6 n 7 . 0 4.3 振动测量仪器(拾振仪) (2)位移计(地震仪) 位移计是用来测量仪器基底的位移量 仪器基底位移时程: 在基底位移作用下仪器质点的运动方程为: 仪器质点的所记录的相对位移u(t)为: )sin( 0 2 tumkuucum g tuu gg sin 0 )sin()( )sin()( 0 2 0 2 tuR tRu k m tu gd n dg (1)位移计(地震仪) 通常采用降低位移计中弹簧刚度的方法来实现降低n的目的。因 此,位移计中弹簧刚度比较小,是比较柔性的。 1/ n n
13、5 . 0 0 2 0 )( gd n uRu d ng R u u 2 0 0 )( 位移比 4.4 隔振(震) 隔振(震)分两种情况: 1)阻止振动的输出。例如,大型机器动力机器 振动向地基中的传播;地铁车辆振动传播。 力的传递和隔震 2)阻止振动的输入。例如,结构抗震问题中的 隔震设计,在振动的结构或地基上安装的精 密仪器设备的隔震问题。 基底振动的隔离 4.4 隔振(震) 力的传递和隔震 基底振动的隔离 4.4 隔振(震) 1、力的传递和隔震 p0 sint机器的不平衡力 机器的转速(角速度) m 机器质量(设为刚性质量块) k、c隔振元件的总刚度和阻尼。 fT 从隔振元件传到地基上的
14、力 单质点体系简谐振动问题的解为: uckufff DsT )sin()(tRutu dst 1、力的传递和隔震 传到地基上的力为: 作用力fT的最大值为: 将ust=p0 /k、c=2mn代入上式得: TR传递率(transmissibility),是反映隔振效果的量 uckufff DsT )sin()(tRutu dst )cos()sin()(tctkRutf dstT 222 max ckRuf dstT 222 2 0 max )/(2)/(1 )/(21 nn nT p f TR 1、力的传递和隔震 力的传递率TR 当频率比: 传递率: 为达到隔振的目的, 可采用降低n的办法,
15、减小隔振元件刚度, 或 增加仪器质量 的方法,提高隔振效果。 实际的减震设计方案应在 尽量小的刚度和可接受的 静位移之间优化选取。 阻尼对隔振的影响? 222 2 0 max )/(2)/(1 )/(21 nn nT p f TR 2 n 1TR 4.4 隔振(震) 2、基底振动的隔离 ug(t)基底(地面)的振动位移时程; ut(t)=u(t)+ug(t)质点的绝对运动时程; u(t)相对位移。 输入基底运动的位移时程为: 单质点体系简谐振动问题的解为: 质点的总位移ut(t)为: tutu gg sin)( 0 )sin()()( 0 2 tuRtu gd n )sin()/(21)()(
16、)( 1 2 0 tRutututu ndgg t 2、基底振动的隔离 位移的传递率TR为 : 位移的传递率与力的传递率完全相同,说明两种隔振 问题是相通和相同的,其隔振设计方法也基本相同 2 0 0 )/(21 nd g t R u u TR 222 2 0 0 )/(2)/(1 )/(21 nn n g t u u TR 222 )/(2)/(1 1 nn d R 2、基底振动的隔离 对建筑结构的隔震问题与以上讨论的单质点体系隔振 问题有类似的地方。 例如都是试图通过降低体系自振频率的方法来提高隔震 (振)效率。 也有不同的地方,建筑结构体系是多自由度体系,其隔 震(振)效率的研究更复杂,
17、而且地震动是宽频带的过 程,总有与结构自振频率相同的频率成份存在,无法 通过避开地震动频率的方法来实现隔震(振)的目地。 隔震问题研究已成为一门专门的工程抗震研究领域。 加速度传递率为 : 加速度的传递率与位移的传递率相同 0 0 0 2 0 2 0 0 g t g t g t u u u u u u TR 2、基底振动的隔离 算例1,工程场地竖向加速度为g=0.1g, 振动频率为f=10Hz,安放一个重m=50kg 的敏感仪器,仪器固定在刚度k=14kN/m, 阻尼比=10%的橡胶隔振垫上, 问: 传递到仪器上的加速度是多少? 如果仪器只能承受0.005g的加速度,给出解决方案。 2、基底振
18、动的隔离 解: 传递到仪器上的加速度是多少? 求TR 体系自振频率: 频率比: 加速度传递率: 传递到仪器上的加速度: g=0.1g,f=10Hz,m=50kg,k=14kN/m,=10% sec/73.161000 50 14 rad m k n 75. 3 73.16 102 n gguTRu g t 009. 01 . 0091. 0 00 091. 0 )(2)(1 )(21 222 2 0 0 nn n g t u u TR 2、基底振动的隔离 解: 如果仪器只能承受0.005g的 加速度,给出解决方案。 降低体系的自振频率n,即 增大/n可以提高隔振效率, 由于隔振垫参数不易改变,
19、 采用增加附加质量办法降低n, 先假设附加质量mb=60kg, 体系总质量m=m+mb=110kg。 例题1 体系新的n和/n可为: 体系新的阻尼比: 57. 5 28.11 102 sec/28.111000 110 14 n n rad 067. 01 . 0 28.11)5060( 73.1650 22 n n nn m m mmc 例题1 体系新的传递率: 传递到仪器上的加速度: 因为 方案成功。 如果要求附加质量后,0t=0.005g,则mb应是多少? 57. 5 28.11 102 n 067. 0 04. 0 )57. 5067. 02()57. 51 ( )57. 5067.
20、02(1 222 2 RT gguRTu g t 004. 01 . 004. 0 00 ggu t 005. 0004. 0 0 算例2 汽车在多跨连续梁上行驶,桥梁跨度均为L=30m,桥面由于 长时徐(蠕)变效应而产生15cm的挠度(桥面的中点)。桥面可以用振 幅为7.5cm的正弦曲线来近似,汽车可以用一个单质点SDOF体系 模拟,如果车重m=1.8t,等效弹簧刚度K=140kN/m,等效阻尼比 =40%, 求: 车以80km/h行驶时,汽车的竖向运动ut(t)的振幅u0t 发生共振时汽车的行驶速度(使振幅最大时的速度) 算例2 解: 车以80km/h行驶时,汽车的竖向运动ut(t)的振幅
21、u0t 汽车相当于受振幅为ug0=0.075m, 波长为L=30m的简谐运动ug的干扰 简谐运动的周期: 车辆的固有周期: ssmmvLT35. 1)3600/80000(30/ s k m T n n 71. 0 140 8 . 1 22 2 算例2 频率比: 振动传递率: 汽车竖向运动的振幅: sT35. 1 sTn71. 0 53. 0 35. 1 71. 0 T Tn n 3 . 1 )53. 04 . 02()53. 01 ( )53. 04 . 02(1 )2()1 ( )2(1 222 2 222 2 TR muuTRu gg t 0975. 0075. 03 . 13 . 1
22、000 算例2 解: 发生共振时汽车的行驶速度(使振幅最大时的速度) 如果体系的阻尼比很小, 当=n时ut最大,而本 问题阻尼比0.4很大, 因此使u0t取最大的不一 定等于n,此时要采用取 极值条件求使u0t最大, 即使TR取最大。 算例2 使TR取最大值的频率,也使TR2取最大值。 当汽车的行驶速度为135km/h时,车辆的振幅达到最大 vLT/ 2 2 222 1(2) (1)(2) TR 0 2 TR 89. 0 T Tn n 798. 0 89. 0 71. 0 n T T sTn71. 0 hkmsm T L v/135/6 .37 798. 0 30 4.5 用简谐振动(强迫振动
23、)试验 确定体系的粘性阻尼比 可以用自由振动方法求阻尼比 的原因是由于自振衰减的快慢由控 制,或说衰减规律可以明显反应出阻 尼比的影响。而动力放大系数同样 受控制,Rd曲线形状可以反映出 的影响,其影响主要有两点: (1)峰值大小, (2)曲线的胖瘦。 利用体系对简谐荷载反应的结果也可以得到体系的阻尼 比,有两种主要方法:共振放大法和半功率(带宽) 法,其原理均是基于对动力放大系数Rd的分析。 1、共振放大法 根据动力放大系数Rd : 当发生共振(/n1)时: 222 )/(2)/(1 1 nn d R 2 1)( )( 00 st n st nd u u u u R n )(2)(2 1 0
24、n st nd u u R 1、共振放大法 由于从动力放大曲线定u0(n)不容易,一般用u0m代替, u0m=max(u0),则: 用共振放大法确定体系的阻尼比,方法简单。但实际工程中测得 的动力放大系数曲线一般以u0图给出,用以上公式计算阻 尼比时,还需得到零频时的静位移值ust,实际测量静载位移 无论从加载设备和记录(拾振)设备都有一定的困难,即实现动 力加荷和测量动力信号的设备不能在零频率时工作。因此工 程中往往采用半功率(带宽)法从动力试验中得到阻尼比。 )(2)(2 1 0n st nd u u R m st d u u R 0max 2)(2 1 4.5 用强迫振动试验确定体系的阻
25、尼比 2、半功率带宽法 (半功率点法) 半功率点:动力放大系数Rd 上振幅值等于1/2倍最大振 幅的点所对应的两个频率点。 记:a和b分别等于半功 率点对应的两个频率。 则阻尼比 可由如下公式计算: n ab 2 ab ab ab ab ff ff n ab f ff 2 半功率带宽法 (半功率点法) 证明: n ab 2 由 Rd可知,Rd的最大值。 2 max 12 1 )( d R。而振幅等于 2 1 倍(Rd)max对应的频 率满足以下方程: 2222 12 1 2 1 )/(2)/(1 1 nn (a) 对式(a)两边同时取倒数、并开平方,整理后得: 0)1 (81)(21 (2)(
26、 22224 nn (b) 式(b)是关于(/n)2一元二次方程,可得两个根为: 222 12)21 ()( n (c) 式(c)取正号时对应数值较大的根b,负号对应较小的根a。一般的工程结构,阻尼比 较小,式(c)中 的平方项可忽略,因此 121 n 则对应于半功率点的两个根为: 1,1 n a n b (d) 由式(d)得到半功率点频率b和a与阻尼比 的关系, 2 n ab (e) 由此得到式(4.34) 。若再用式(d)得关系2 n ab ,代入式(e),又得到式(4.35) 。 ab ab 三种阻尼比的测量方法 共介绍了三种测量结构阻尼的方法:对数衰减率法、共振放大法和半功率带 宽法,
27、虽然是针对单自由度体系推导的,但这些方法对多自由度体系同 样适用。下面对这三种方法给一简要的总结。 (1)对数衰减率法 采用自由振动试验,测一阶振型的阻尼比较容易。高阶振型的阻 尼比的关键是能激发出按相应振型进行的自由振动。 (2)共振放大法 采用强迫振动试验,由于静(零频)荷载下的位移较难确定,应 用上存在一定的技术困难,但通过一定数学上的处理还是可用的, 例如,利用接近零频的非零频位移通过插值外推得到零频时的位 移值。 (3)半功率带宽法 采用强迫振动试验,不但能用于单自由度也可用于多自由度体系, 对多自由度体系要求共振频率稀疏,即多个自振频率应相隔较远, 保证在确定相应于某一自振频率的半
28、功率点时不受相邻频率的影 响。 4.6 粘性阻尼的能量耗散和等效粘性阻尼 1、粘性阻尼体系的能量耗散 SDOF体系在简谐力p(t)=p0sint作用下, 在一个振动循环内的能量耗散记为: ED 阻尼引起的能量耗散,即阻尼力做的功; EI 外力做的功; ES 弹性力做的功; EK 惯性力做的功。 在简谐荷载p(t)作用下, SDOF的位移为: )sin()( 0 tutu (1)阻尼引起的能量耗散ED 粘性阻尼引起的耗散与振幅u0的平方成正比, 与阻尼比和外荷载的频率成正比。 2 0 2 0 /2 0 2 0 /2 0 2 /2 0 )(2 )cos( )( ku uc dttuc dtucdt
29、uucdufE n DD 2 22( /)2/ nnnn cmkkk (2)外力做的功EI (IInput) 2 000 /2 0 00 /2 0 )(2sin )cos()sin( )()( kuup dttutp dtutpdutpE n I 0 0 sin(2)2 () / d nn u R pk (3)弹性力的功 ES (4)惯性力的功 EK (Kinetic) 可见在简谐振动中的一个循环内,弹性力和惯性力做功 均等于零,而由阻尼耗散的能量等于外力做的功。 0)cos()sin( )( 0 /2 0 0 /2 0 dttutuk dtukudufE sS /2 0 00 2 /2 0
30、0)cos()sin( )( dttutum dtuumdufE IK 0 ( )sin()u tut 4.6 粘性阻尼的能量耗散和等效粘性阻尼 2、等效粘性阻尼 (1) 粘性阻尼是一种理想化的阻尼,具有简单和便于分 析计算的优点。 (2) 工程中结构的阻尼源于多方面,其特点和数学描述 更为复杂,这时可以将复杂的阻尼在一定的意义上 等效成粘性阻尼。 (3) 一般采用基于能量等效的原则。 (4) 阻尼耗散能量的大小可以用阻尼力的滞回曲线反映。 2、等效粘性阻尼 (1)阻尼力的滞回曲线 阻尼力的滞回曲线:阻尼力与位移之间的关系曲 线,即fDu曲线。 )()sin( )cos()( 2 2 0 2
31、0 2 0 0 tuuctuuc tuctucf D 粘性阻尼力 滞回曲线 2、等效粘性阻尼 (1)阻尼力的滞回曲线 对粘性阻尼力的滞回曲线整理可以得到: 研究滞回曲线的意义:力在一个循环内所做的功等于 证明: 滞回曲线所包围的面积。 粘性阻尼力 的滞回曲线 是一椭圆 1)()( 2 0 2 0 uc f u u D D n D Ekuuc ucuabS 2 0 2 0 00 2 )(椭圆面积: )( 2 2 0 tuucf D 2、等效粘性阻尼 (1)阻尼力的滞回曲线 抗力曲线:fD+ fsu曲线。fD+ fs有时称为抗力。 抗力滞回曲线包围的面积等于阻尼力做的功。 在实际测量时,量测到的量
32、是抗力。 2、等效粘性阻尼 (2)等效粘性阻尼比 确定等效粘性阻尼比的原则:基于能量耗散相等 的原理。 具体实现方法:在一个振动循环内让等效粘性阻 尼做的功等于实际阻尼所做的功。 (2)等效粘性阻尼比 在一个循环内实际阻尼力作的功: 在一个循环内等效阻尼力作的功: 粘 D E D E (2)等效粘性阻尼比 DD EE 粘 2 0 )/(2ku E n D eq 2 0 2 ku E D eq 0 4 S D eq E E 2 0 2 Deq n Eku 粘 1/ n 2 00 1 2 S Eku 4.7 滞变阻尼(复阻尼)理论 粘滞阻尼由于其在建立运功方程和求解时的方便性,而 在工程中得到广泛
33、应用。但它也存在一个严重的缺 陷,即,粘滞阻尼力和能量耗散与激振频率有关。 例如在每一振动循环中耗散的能量为: 对一结构体系,阻尼比为常数,固定振幅u0,则在每 一振动循环中耗散的能量与激振频率成正比,这与 结构试验结果不符,试验结果表明,阻尼力或其耗 能与频率基本是无关的。为此,人们发展了滞变阻 尼理论(hysteretic)。 2 0 2kuE n D 滞变阻尼(hysteretic):阻尼力大小与位移幅值成正比 而与速度同相。 三种型式的滞变阻尼定义: 克拉夫1981 Clough(克拉夫) 1993 Chopra 1995 其中为滞变阻尼参数。 第一种型式是直接套用滞变阻尼的定义; 第
34、二种是滞变阻尼的复数形式; 第三种是从构造频率无关阻尼的构思出发。 )( )( )( tu tu tukf D )(tkuif D )(tu k f D 4.7 滞变阻尼(复阻尼)理论 三种型式定义的滞变阻尼在复数域是完全等价, 例如,假设 u(t)=u0eit,则 fD 均可写成 iKu(t) , 但在实数域则不尽相同。 共同点是耗能与频率无关,但具体耗能值不同。 第一种: 第三种: 从滞回曲线形状分析,第一种形式滞变阻尼与实际相 差太大,不可接受。 第二和第三种形式滞变阻尼的耗能相同。 2 01 2 kuE D 2 032 kuEE DD 滞变阻尼与粘滞阻尼的关系 将滞变阻尼滞回耗能关系代
35、入计算等效粘性阻尼比公式 得到: 或: 当共振时,滞变阻尼参数与阻尼比关系: )/(2 1 n 2 03 kuEE DD )(2 n 2 2 0 )/(2ku E n D eq 4.7 滞变阻尼(复阻尼)理论 滞变阻尼参数与阻尼比关系式:2是在n时取得 的,对n时并不成立。有些教科书中没有明确指 出这点,有时导致模糊的概念。 粘性阻尼与滞变阻尼耗能ED与激振频率的关系 4.7 滞变阻尼(复阻尼)理论 用滞变阻尼第二种表达式 fDiKu(t) 时也称为复 阻尼,在复阻尼理论中,将阻尼力和弹性恢 复力合在一起构成复刚度。由 fDiku(t) 和 fs=ku(t),可定义复刚度为: 复数形式的简谐荷
36、载作用下质点的运动方程: kik 1 ti epukum 0 4.7 滞变阻尼(复阻尼)理论 复数形式的稳态解可设成: ti Uetu )( ti epukum 0 ti Ueu 2 22 2 0 )(1 )(1 n n i K P U kik 1 2 0 i ti t mK Uep e 4.7 滞变阻尼(复阻尼)理论 复数形式的稳态反应为: u(t)是一个复函数,可写成它的模与单位复数积的形式 其中, ti n n e i k p tu 22 2 0 )(1 )(1 )( )( 0 )( ti eutu 2 1 222 0 0 )(1 tan )(1 1 n n k p u 当取 时,复阻尼
37、理论的解与粘滞阻尼 理论的解完全相同。 2 1 222 0 0 )(1 tan )(1 1 n n k p u 2 () n 222 0 )/(2)/(1 1 nn st uu 2 1 )/(1 )/(2 tan n n 滞变阻尼和粘性阻尼的耗能 滞变阻尼的耗能接近实际,而粘性阻尼当外力频率较低 时,低估了体系的耗能能力;外力频率较高时,又 会过高估计耗能能力。因此,希望通过阻尼比的选 取使粘性阻尼理论能正确反映所有频率时体系的耗 能是不可能的,一个较为稳妥的方法是使阻尼比的 选取能较为正确地反映感兴趣频段内的耗能能力。 这可通过设外荷载频率等于感兴趣频率的方法实现。 实际的做法是取外荷载频率
38、等于结构自振频率,此 时结构的反应最大,是阻尼影响最大的点。 由于结构往复试验时,在不同频率下得到的滞回环面积 基本相等,因此可以用共振时的公式来定阻尼比, 而不考虑实际加荷频率,这样得到的阻尼比对反映 共振时的耗能能力相对准确。 4.8 单自由度体系对周期荷载的反应 依靠的基础: 依靠已得到的单自由度体系对简谐荷载反应分析结 果。在获得简谐荷载作用的结果后,就可以方便地 分析单自由度体系对任意周期性荷载的反应,简谐 荷载是一种最简单、最具代表性的周期荷载,而任 意周期性荷载均可以分解成简谐荷载的代数和。 具体实施方法: 利用Fourier级数展开法。将任意的周期荷载p(t)展 开成Fouri
39、er级数,把任意周期性荷载表示成一系列 简谐荷载的叠加,对每一简谐荷载作用下结构的反 应可以容易得到其稳态解,再求和,得到结构在任 意周期性荷载作用下的反应。 限制条件: 结构体系是线弹性的。可使用叠加原理。 4.8 单自由度体系对周期荷载的反应 设任意的周期荷载p(t),将其展开成付氏级数, Tp荷载的周期 11 0 sincos)( j jj j jj tbtaatp p j T jj 2 1 p p p T j p j T j p j T p ndtttp T b ndtttp T a dttp T a 0 0 0 0 ,3 ,2 ,1)sin()( 2 ,3 ,2 ,1)cos()( 2 )( 1 当用Fourier级数展开法时,隐含假设周期函数是从- 开始到+。初始条件(t=-)的影响到t=0时已完 全消失,仅需计算稳态解,即特解。 对应于每一简谐荷载项作用,体系的反应为: 222 2 222 2 00 )2()1 ( cos2sin)1 ( )2()1 ( cos)1 (sin2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 8《世说新语》二则 咏雪 第1课时 课件 -语文五四制七年级上册
- 文化创意产品开发合伙协议范本与市场推广策略
- 离婚协议书范本:财产分割与债务承担协议
- 科技园区租赁合同担保与创新创业项目合作协议
- 物业管理公司员工安全责任与应急救援服务合同
- 生态农业示范区空置土地租赁与农业科技推广合作合同
- 班组长安全知识培训课件
- 班组新员工安全培训课件
- 2025年妇科产科护士妇科产房护理技能模拟测试答案及解析
- 徽州美术绘画课件
- 成都银行招聘考试真题2024
- 2025年农村应急广播系统使用与维护培训模拟题集及解析答案
- 班级日常管理规范及实施方案
- 专利代理培训课件
- 田径短跑教学课件
- 2025-2026学年教科版(2024)小学体育与健康二年级全一册教学计划及进度表(第一学期)
- GJB3243A-2021电子元器件表面安装要求
- 员工思想培训课件内容
- 时尚传播课件
- 电焊机安全知识培训课件
- 反恐知识安全培训课件
评论
0/150
提交评论