第一性计算原理_第1页
第一性计算原理_第2页
第一性计算原理_第3页
第一性计算原理_第4页
第一性计算原理_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Vasp我所用第一原理是基于密度泛函(DFT)的从头计算,是以电子密度作为基本变量(HK定理),通过求解kohn-sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质。还有一种是基于hartree-fock自洽计算,通过自洽求解HF方程,获得体系的波函数,求基态性质。KS方程的计算水平达到了HF水平,同时还考虑了电子间的交换关联作用。关于DFT中密度泛函的Function其实是交换关联泛函,包括LDA,GGA,杂化泛函等等。一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案;GGA为广义梯度近似,不仅将电子密度作为交换关联

2、泛函的变量,也考虑了密度的梯度为变量,包括PBE,PE.RPBE等方案。在处理计算体系中原子的电子态时有两种方法,一种是考虑所有电子叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);另一种是只考虑价电子而把芯电子和原子核构成离子实放在一起考虑即赝势法,一般贋势法是选取一个截断半径,截断半径以内波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且贋势法得到的本征值和全电子法应该相同。贋势的测试标准应是贋势与全电子法计算结果的匹配度,而不是贋势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。关于Ecut的收敛测试。一般情况下,总能相对于不同Ecut做计算,当截

3、断能增大时总能变化不明显即可。但是在需要考虑体系应力时,还需要对应力进行收敛测试,而且应力相对于截断能要比总能更为苛刻。也就是某个截断能下总能已经收敛了,但应力未必收敛。(力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。)K点也是需要经过测试的。何时需要考虑自旋?例如BaTiO3中,三个元素分别为=+2,+4,-2价,离子全部为各个轨道满壳层的结构,此时就不必考虑自旋了。对于BaMnO3中,由于Mn+4价时d轨道还有电子但未满,因此需要考虑Mn(4s23d5)的自旋,Ba和O就不必考虑。其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时

4、作为初始值使用。几何优化包括晶格常数和原子位置的优化,一般情况下也有不优化几何结构直接计算电子结构的,但是对于缺陷形成的计算则往往要优化。软件大致分为基于平面波的软件,如CASTEP,PWSCF.ABINIT等,计算量大概和体系原子数目的三次方相关;还有基于原子轨道线性组合的软件,比如openmx等,计算量和体系原子数目相关,一般可模拟较多原子数目的体系。VASP是使用贋势和平面波基组,进行从头量子力学分子动力学计算的软件包。VASP中的方法基于有限温度下的局域密度近似(用自由能作为变量)以及对每一MD步骤用有效矩阵对角方案和有效Pulay混合求解瞬时电子基态。这些技术可以避免元氏的Car-P

5、arrinello方法存在的一切问题,而后者是基于电子、离子运动方程同时积分的方法。离子和电子的相互作用超缓Vanderbilt贋势(US-PP)或投影扩充波(PAW)方法描述。两种技术都可以相当程度地减少过度金属或第一行元素的每个原子所必须的平面波数量。VASP可以很容易地计算力与张力,用于把原子衰减到其瞬时基态中。!VASP程序亮点:1、 使用PAW方法或超软贋势,因此基组尺寸非常小,描述材料一般需要原子不超过100个平面波,大多数情况下甚至每原子50个平面波就能得到可靠结果。2、 2. 在平面波程序中,某些部分代码的执行是三次标度。在VASP中,三次标度部分的前因子足可忽略,导致关于体系

6、尺寸的高效标度。因此可以在实空间求解势的非局域贡献,并使正交化的次数最少。当体系具有大约2000个电子能带时,三次标度部分与其它部分可比,因此VASP可用于直到4000个价电子的体系。3、 VASP使用传统的自洽场循环计算电子基态。这一方案与数值方法组合会实现有效、稳定、快速的Kohn-Sham方程自洽求解方案。程序使用的迭代矩阵对角化方案(RMM-DISS和分块Davidson)可能是目前最快的方案。4、 VASP包含全功能的对称性代码,可以自动确定任意构型的对称性。5. 对称性代码还用于设定Monkhorst-Pack特殊点,可以有效计算体材料和对称的团簇。Brillouin区的积分使用模

7、糊方法或四面体方法。四面体方法可以用Blchl校正去掉线性四面体方法的二次误差,实现更快的k点收敛速度。1、VASP能够进行哪些过程的计算?怎样设置?我们平时最常用的研究方法是做单点能计算,结构优化、从头计算的分子动力学和电子结构相关性质的计算。一般我们的研究可以按照这样的过程来进行如果要研究一个体系的最优化构型问题可以首先进行结构弛豫优化,然后对优化后的结构进行性质计算或者单点能计算。如果要研究一个体系的热力学变化过程可以首先进行分子动力学过程模拟,然后在某个温度或压强下进行性质计算或者单点能计算。如果要研究一个体系的热力学结构变化可以首先在初始温度下进行NVT计算,然后进行分子动力学退火,

8、然后在结束温度下进行性质计算研究。2、什么是单点能计算(single point energy)?如何计算?跟其它软件类似,VASP具有单点能计算的功能。也就是说,对一个给定的固定不变的结构(包括原子、分子、表面或体材料)能够计算其总能,即静态计算功能。单点能计算需要的参数最少,最多只要在KPOINTS文件中设置一下合适的K点或者在INCAR文件中给定一个截断能ENCUT就可以了。还有一个参数就是电子步的收敛标准的设置EDIFF,默认值为EDIFF=1E-4,一般不需要修改这个值。具体来说要计算单点能,只要在INCAR中设置IBRION=-1也就是让离子不移动就可以了。3、什么是结构优化(st

9、ructure optimization)?如何计算?结构优化又叫结构弛豫(structure relax),是指通过对体系的坐标进行调整,使得其能量或内力达到最小的过程,与动力学退火不同,它是一种在下用原子间静力进行优化的方法。可以认为结构优化后的结构是相对稳定的基态结构,能够在实验之中获得的几率要大些(当然这只是理论计算的结果,必须由实验来验证)。一般要做弛豫计算,需要设置弛豫收敛标准,也就是告诉系统收敛达成的判据(convergence break condition),当系统检测到能量变化减小到一个确定值时例如EDIFFG=1E-3时视为收敛中断计算,移动离子位置尝试进行下一步计算。E

10、DIFFG这个值可以为负,例如EDIFFG=-0.02,这时的收敛标准是当系统发现所有离子间作用力都小于给定的数值,如.eV/A时视为收敛而中断。弛豫计算主要有两种方式:准牛顿方法(quasi-Newton RMM-DIIS)和共轭梯度法(CG)两种。准牛顿方法计算速度较快,适合于初始结构与平衡结构(势能面上全局最小值)比较接近的情况,而CG方法慢一些,找到全局最小的可能性也要大一些。选择方法为IBRION=1时为准牛顿方法而IBRION=2时为CG方法。具体来说要做弛豫计算,设置IBRION=1或者2就可以了,其它参数根据需要来设置。NSW是进行弛豫的最大步数,例如设置NSW=100,当计算

11、在100步之内达到收敛时计算自动中断,而100步内没有达到收敛的话系统将在第100步后强制中止(平常计算步数不会超过100步,超过100步可能是计算的体系出了问题)。参数通常可以从文献中发现,例如收敛标准EDIFFG等。有的时候我们需要一些带限制条件的弛豫计算,例如冻结部分原子、限制自旋的计算等等。冻结部分原子可以在POSCAR文件中设置selective dynamic来实现。自旋多重度限制可以在INCAR中以NUPDOWN选项来设置。另外ISIF选项可以控制弛豫时的晶胞变化情况,例如晶胞的形状和体积等。费米面附近能级电子分布的smearing是一种促进收敛的有效方法,可能产生物理意义不明确

12、的分数占据态情况,不过问题不大。在INCAR文件中以ISMEAR来设置。一般来说K点只有一两个的时候采用ISMEAR=0,金属体材料用ISMEAR=1或2,半导体材料用ISMEAR=-5等等。不过有时电子步收敛速度依然很慢,还需要设置一些算法控制选项,例如设置ALGO=Very_Fast,减小真空层厚度,减少K点数目等。弛豫是一种非常有效的分析计算手段,虽然是静力学计算但是往往获得一些动力学得不到的结果。INCAR:EDIFF 一般来说,用1E-4 或者1E-5都可以,这个参数只是对第一个离子步的自洽影响大一些,对于长时间的分子动力学的模拟,精度小一点也无所谓,但不能太小。IBRION=0 分

13、子动力学模拟IALGO=48 一般用48,对于原子数较多,这个优化方式较好。NSW=1000 多少个时间步长。POTIM=3时间步长,单位fs, 通常1到3.ISIF=2计算外界的压力.NBLOCK= 1多少个时间步长,写一次CONTCAR,CHG和CHGCAR,PCDAT.KBLOCK=50 NBLOCK*KBLOCK 个步长写一次XDATCAR.(个离子步写一次PCDAT.)ISMEAR=-1费米迪拉克分布.SIGMA =0.05 单位:电子伏NELMIN=8一般用6到8, 最小的电子scf数.太少的话,收敛的不好.LREAL=AAPACO=10 径向分布函数距离, 单位是埃.NPACO=

14、200径向分布函数插的点数.LCHARG=F 尽量不写电荷密度,否则CHG文件太大.TEBEG=300初始温度.TEEND=300 终态温度。不设的话,等于TEBEG.SMASS=-3NVE ensemble;-1 用来做模拟退火。大于0 NVT 系综。正确:SMASS=1,2,3 是没有区别的。都是NVT ensemble。SMASS只要是大于0就是NVT系综。CONTCAR是每个离子步之后都会写出来的,但是会用新的把老的覆盖CHG是在每10个离子步写一次,不会覆盖CHGCAR是在任务正常结束之后才写的。5、收敛判据的选择结构弛豫的判据一般有两中选择:能量和力。这两者是相关的,理想情况下,能

15、量收敛到基态,力也应该是收敛到平衡态的。但是数值计算过程上的差异导致以二者为判据的收敛速度差异很大,力收敛速度绝大部分情况下都慢于能量收敛速度。这是因为力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。到底是以能量为收敛判据,还是以力为收敛判据呢?关心能量的人,觉得以能量为判据就够了;关心力相关量的人,没有选择,只能用力作为收敛标准。对于超胞体系的结构优化,文献大部分采用Gamma点做单点优化。这个时候即使采用力为判据(EDIFFG=-0.02),在做静态自洽计算能量的时候,会发现,原本已经收敛得好好的力在不少敏感位置还是超过了结构优化时设置的标

16、准。这个时候,是不是该怀疑对超胞仅做Gamma点结构优化的合理性呢?是不是要提高K点密度再做结构优化呢。在我看来,这取决于所研究的问题的复杂程度。我们的计算从原胞开始,到超胞,到掺杂结构,到吸附结构,到反应和解离。每一步都在增加复杂程度。结构优化终点与初始结构是有关的,如果遇到对初始结构敏感的优化,那就头疼了。而且,还要注意到,催化反应不仅与原子本身及其化学环境有关,还会与几何构型有关。气固催化反应过程是电子的传递过程,也是分子拆分与重新组合的过程。如果优化终点的构型不同,可能会导致化学反应的途径上的差异。仅从这一点来看,第一性原理计算的复杂性,结果上的合理性判断都不是手册上写的那么简单。对于

17、涉及构型敏感性的结构优化过程,我觉得,以力作为收敛判据更合适。而且需要在Gamma点优化的基础上再提高K点密度继续优化,直到静态自洽计算时力达到收敛标准的。6、结构优化参数设置结构优化,或者叫弛豫,是后续计算的基础。其收敛性受两个主要因素影响:初始结构的合理性和弛豫参数的设置初始结构初始结构包括原子堆积方式,和自旋、磁性、电荷、偶极等具有明确物理意义的模型相关参数。比如掺杂,表面吸附,空位等结构,初始原子的距离,角度等的设置需要有一定的经验积累。DFT计算短程强相互作用(相对于范德华力),如果初始距离设置过远(如超过4埃),则明显导致收敛很慢甚至得到不合理的结果。比较好的设置方法可以参照键长。

18、比如CO在O顶位的吸附,可以参照CO2中C-O键长来设置(如增长20%)。也可以参照文献。记住一些常见键长,典型晶体中原子间距离等参数,有助于提高初始结构设置的合理性。实在不行,可以先在小体系上测试,然后再放到大体系中算。弛豫参数弛豫参数对收敛速度影响很大,这一点在计算工作没有全部铺开时可能不会觉察到有什么不妥,反正就给NSW设置个“无穷大”的数,最后总会有结果的。但是,时间是宝贵的,恰当的设置3小时就收敛的结果,不恰当的设置可能要一个白天加一个黑夜。如果你赶文章或者赶着毕业,你就知道这意味这什么。结构优化分电子迭代和离子弛豫两个嵌套的过程。电子迭代自洽的速度,有四个响很大的因素:初始结构的合

19、理性,k点密度,是否考虑自旋和高斯展宽(SIGMA);离子弛豫的收敛速度,有三个很大的影响因素:弛豫方法(IBRION),步长(POTIM)和收敛判据(EDIFFG).一般来说,针对理论催化的计算,初始结构都是不太合理的。因此一开始采用很粗糙的优化(EDIFF=0.001,EDIFFG=-0.2),很低的K点密度(Gamma),不考虑自旋就可以了,这样NSW60的设置就比较好。其它参数可以默认。经过第一轮优化,就可以进入下一步细致的优化了。就我的经验,EDIFF=1E-4,EDIFFG=-0.05,不考虑自旋,IBRION=2,其它默认,NSW=100;跑完后可以设置IBRION = 1,减小

20、OPTIM(默认为0.5,可以设置0.2)继续优化。优化的时候让它自己闷头跑是不对的,经常看看中间过程,根据情况调节优化参数是可以很好的提高优化速度。这个时候,提交两个以上的任务排队是好的方式,一个在调整的时候,下一个可以接着运行,不会因为停下当前任务导致机器空闲。无论结构优化还是静态自洽,电子步的收敛也常常让新手头痛。如果电子步不能在40步内收敛,要么是参数设置的问题,要么是初始模型太糟糕(糟糕的不是一点点)。静态自洽过程电子步不收敛一般是参数设置有问题。这个时候,改变迭代算法(ALGO),提高高斯展宽(SIGMA增加),设置自洽延迟(NELMDL)都是不错的方法。对于大体系比较难收敛的话,

21、可以先调节AMIN,BMIX跑十多步,得到电荷密度和波函数,再重新计算。实在没办法了,可以先放任它跑40步,没有收敛的迹象的话,停下来,得到电荷密度和波函数后重新计算。一般都能在40步内收敛。对于离子弛豫过程,不调节关系也不大。开始两个离子步可能要跑满60步(默认的),后面就会越来越快了。总的说来,一般入门者,多看手册,多想多理解,多上机实践总结,比较容易提高到一个熟练操作工的水平。如果要想做到“精确打击”,做到能在问题始发的时候就立刻采取有效措施来解决,就需要回归基础理论和计算方法上来了。7、优化结果对初始结构和“优化路径”的依赖原子吸附问题不大,但是小分子吸附,存在初始构型上的差异。sla

22、b上水平放置,还是垂直放置,可能导致收敛结果上的差异。根据H-K理论,理想情况下,优化得到的应该是全局最小,但在数值计算的时候可能经常碰到不是全局最小的情况。实际操作中发现,多个不同初始结构优化收敛后在能量和结构上存在一定差异。为了加快收敛速度,特别是对于表面-分子吸附结构,初始放松约束,比如EDIFF=1E-3,EDIFFG=-0.3,NSW=30可能是很好的设置。但是下面的情况应当慎重:EDIFF=1E-3;EDIFFG=-0.1;!或者更小NSW=500;!或者更大电子步收敛约束较小,而离子步约束偏大,离子步数又很多,这种情况下,可能导致的结果是结构弛豫到严重未知的区间。再在这个基础上提高约束来优化,可能就是徒劳的了结果不可逆转的偏向不正常的区间。好的做法,是对初始结构做比较松弛的约束,弛豫离子步NSW应该限制在一个较小的数值内。EDIFF=1E-3的话,EDIFFG也最好是偏大一些,如-0.3而不是-0.1. 这样可以在较少的步数内达到初步收敛。对于远离基态的初始结构,一开始在非

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论