版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第二章 工艺计算 内容摘要 本文讲述了我国聚氯乙烯工业生产技术的发展进程和目前状况,包括原料路线、工艺设备、聚合方法等。本设计采用悬浮法生产聚氯乙烯,介绍了采用悬浮法生产pvc树脂工聚合机理,工艺过程中需要注意的问题,包括质量影响因素,工艺条件及合成工艺中的各种助剂选择,对聚合工艺过程进行详细的叙述。并且从物料衡算、热量衡算和设备计算和选型三个方面进行准确的工艺计算,对三废的处理回收等进行了叙述,画出了整个工艺的流程图。关键词 :聚氯乙烯; 生产技术; 悬浮法; 乙炔法; 乙烯法; 防粘釜技术;目 录引言4第一章 总论61.1 国内外 pvc发展状况及发展趋势61.2 单体合成工艺路线71.
2、2.1乙烯路线71.2.2乙炔路线81.3聚合工艺实践方法81.3.1悬浮聚合生产工艺91.3.2乳液聚合生产工艺91.4最佳的配方、后处理设备的选择101.4.1配方的选择101.4.2后处理设备侧选择101.5 防粘釜技术121.6原料及产品性能131.7 聚合机理141.7.1链反应动力学机理141.7.2自由基聚合机理141.7.3 成粒机理与颗粒形态151.8影响聚合及产品质量的因素161.9工艺流程叙述171.9.1加料系统171.9.2聚合系统181.9.3回收系统191.9.4干燥系统20第二章 工艺计算202.1物料衡算202.1.1聚合釜202.1.2 混料槽242.1.3
3、离心机252.1.4 沸腾床262.1.5包装272.2热量衡算282.2.1聚合釜282.2.2沸腾床的热量计算332.3 设备的计算及选型392.3.1 聚合釜392.3.2 混料槽412.3.3 离心机412.3.4 内热式沸腾床的计算422.3.5 泵、鼓风机、过滤器47第三章非工艺部分503.1三废处理情况503.1.1热水的综合利用503.1.2尾气的回收利用50结束语51引言 聚氯乙烯(pvc)是5大通用塑料之一,具有耐腐蚀、电绝缘、阻燃性和机械强度高等优异性能,广泛用于工农业及日常生活等各个领域,尤其是近年来建筑市场对pvc产品的巨大需求,使其成为具备相当竞争力的一个塑料品种。
4、 pvc糊树脂自20世纪30年代开发以来,已有近70年的历史。目前全世界pvc糊树脂总生产能力约200万t/a,其中,西欧是pvc糊树脂生产厂家最多、产量最大的地区。我国聚氯乙烯工业起步于于50年代,仅次于酚醛树脂是最早工业化生产的热塑性树脂,第一个pvc装置于1958年在锦西化工厂建成投产,生产能力为3000吨年。此后全国各地的pvc装置相继建成投产,到目前为止,我国有pvc树脂生产企业80余家,遍布全国29个省、市、自治区,总生产能力达220万吨年7075万t/a。pvc树脂在我国塑料工业中具有举足轻重的地位,同时pvc作为氯碱工业中最大的有机耗氯产品,对维持氯碱工业的氯碱平衡具有极其重要
5、的作用。 本设计为年产量3.26万吨聚氯乙烯车间聚合工段工艺。本次设计采用了氯乙烯单体悬浮聚合工艺。介绍了pvc的聚合工艺,及合成聚氯乙烯的流程和设备,对整个生产工艺做出了详细的叙述。第一章 总论1.1 国内外 pvc发展状况及发展趋势聚氯乙烯( pvc)是五大热塑性合成树脂之一,塑料制品是最早实现工业化的品种之一。可通过模压、层合、注塑、挤塑、压延、吹塑中空等方式进行加工,而且具有较好的机械性能、耐化学腐蚀性和难燃性等特点,以其低廉的价格和非常突出的性能而广泛地用于生产板材、门窗、管道和阀门等硬制品,也用于生产人造革、薄膜、电线电缆等软制品。近年来,尽管在发达国家受到来自环保等多方面的压力,
6、但世界对的总需求量仍出现稳定的增长态势。我国聚氯乙烯(pvc)工业起步于50年代,仅次于酚醛树脂是最早工业化生产的热塑性树脂,第一个pvc装置于1958年在锦西化工厂建成投产,生产能力为3000吨年1。此后全国各地的pvc装置相继建成投产,到目前为止,我国有pvc树脂生产企业80余家,遍布全国29个省、市、自治区,总生产能力达220万吨年。1992 年,世界 生产能力约为二千二百万吨,需求量为1900万吨 ;2002 年世界总产能约为三千四百万吨,消费量约为二千八百万吨;2009年世界生产能力已上升到约三千九百万吨,需求量约为三千七百万吨;2010 年世界生产能力为 4300万吨 ,需求量42
7、00 万吨 。尽管目前世界对pvc的生产和使用存在许多争议,特别在欧洲,对pvc 生产和制品的环保制约政策越来越严厉,但由于性能优良,生产成本低廉,仍具有较强的活力,特别在塑料门窗、塑料管道等建材领域。pvc由氯乙烯(vcm)聚合而成,工业生产一般采用4种聚合方式:悬浮聚合、本体聚合、乳液聚合(禽微悬浮聚合)、溶液聚合。其中悬浮法pvc(spvc)树脂产量最高,占80,其次是乳液法pvc(epvc),本体法pvc(mpvc)。vcm悬浮聚合是以水为介质,加入vcm、分散剂、引发剂、ph值调节剂等,在搅拌和一定温度条件下进行聚合反应;vcm本体聚合仅在vcm和引发剂存在下进行,无分散剂、表面活性
8、剂等助剂;vcm乳液聚合在vcm、引发剂、乳化剂、h2o以及其他助剂存在下进行而vcm溶液聚合是在vcm、;引发刘和溶剂存在下进行,这种方法有溶剂回收和残留污染问题,并且生产成本高,该方法已逐渐被悬浮法聚合或乳液法聚合代。目前,生产pvc树脂主要采用悬浮法,少量采用乳液法及本体法。pvc可分为硬pvc和软pvc。其中硬pvc大约占市场的2/3,软pvc占1/3。软pvc一般用于地板、天花板以及皮革的表层,但由于软pvc中含有柔软剂(这也是软pvc与硬pvc的区别),容易变脆,不易保存,所以其使用范围受到了局限。硬pvc不含柔软剂,因此柔韧性好,易成型,不易脆,无毒无污染,保存时间长,因此具有很
9、大的 开发应用价值。下文均简称pvc。软质pvc多用来做成真空吸塑薄膜,用于各类面板的表层包装,所以又被称为装饰膜、附胶膜,应用于建材、包装、医药等诸多行业。其中建材行业占的比重最大,为60%,其次是包装行业,还有其他若干小范围应用的行业。中国聚氯乙烯工业有着广阔的发展前景,中国地大物博、人口众多,为聚氯乙烯产品提供了广大的市场。在进入21世纪以后,我们要学习和借鉴国外的先进技术和发展模式,结合我国的具体情况,发展我国的聚氯乙烯工业。我们要发挥全行业的力量,克服前进过程中的各种困难,一定能够在较短的时间内赶上世界聚氯乙烯工业的先进水平4。1.2 单体合成工艺路线1.2.1乙烯路线 乙烯氧氯化法
10、由美国公司goodrich 首先实现工业化生产,该工艺原料来源广泛,生产工艺合理,目前世界上采用本工艺生产的产能vcm约占总产能的vcm 95%以上。乙烯氧氯化法的反应工艺分为乙烯直接氯化制二氯乙烷(edc)、乙烯氧氯化制edc和edc裂解3个部分,生产装置主要由直接氯化单元、氧氯化单元、edc裂解单元、edc 精制单元和vcm单元精制等工艺单元组成。乙烯和氯气在直接氯化单元反应生成edc。乙烯、氧气以及循环的hcl在氧氯化单元生成edc。生成的粗edc在edc精制单元精制、提纯。然后在精edc 裂解单元裂解生成的产物进入vcm单元,vcm精制后得到纯vcm产品,未裂解的edc返回edc精制单
11、元回收,而hcl则返回氧氯化反应单元循环使用。直接氯化有低温氯化法和高温氯化法; 氧氯化按反应器型式的不同有流化床法和固定床法, 按所用氧源种类分有空气法和纯氧法;edc裂解按进料状态分有液相进料工艺和气相进料工艺等。具有代表性的 司的inovyl工艺是将乙烯氧氯化法提纯的循环 edc和vcm直接氯化的 edc在裂解炉中进行裂解生产vcm 。hcl经急冷和能量回收后,将产品分离出 hcl(循环用于氧氯化)、高纯度vcm和未反应的edc(循环用于氯化和提纯)。来自vcm装置的含水物流被汽提,并送至界外处理,以减少废水的生化耗氧量(bod)。采用该生产工艺,乙烯和氯的转化率超过98%,目前世界上已
12、经有50多套装置采用该工艺技术,总生产能力已经超过470万吨/年6。1.2.2乙炔路线 原料为来自电石水解产生的乙炔和氯化氢气体,在催化剂氧化汞的作用下反应生成氯乙烯。 具体工艺为:从乙炔发生器来的乙炔气经水洗一塔温度降至35以下,在保证乙炔气柜至一定高度时,进入升压机组加压至80kpag左右,加压后的乙炔气先进入水洗二塔深度降温至10以下,再进入硫酸清净塔中除去粗乙炔气中的s、p等杂质。 最后进入中和塔中和过多的酸性气体,处理后的乙炔气经塔顶除雾器除去饱和水分,制得纯度达98.5%以上,不含s、p的合格精制乙炔气送氯乙烯合成工序。 乙炔法路线vcm 工业化方法,设备工艺简单,但耗电量大,对环
13、境污染严重。目前,该方法在国外基本上已经被淘汰,由于我国具有丰富廉价的煤炭资源,因此用煤炭和石灰石生成碳化钙电石、然后电石加水生成乙炔的生产路线具有明显的成本优势,我国的vcm 生产目前仍以乙炔法工艺路线为主。乙炔与氯化氢反应生成 可采用气相或液vcm相工艺,其中气相工艺使用较多5。本设计采用乙烯路线生产氯乙烯单体。1.3聚合工艺实践方法 目前,世界上pvc的主要生产方法有4种:悬浮法、本体法、乳液法和微悬浮法。其中以悬浮法生产的pvc占pvc总产量的近90%,在pvc生产中占重要地位,近年来,该技术已取得突破性进展。1.3.1悬浮聚合生产工艺因采用悬浮法pvc生产技术易于调节品种,生产过程易
14、于控制,设备和运行费用低,易于大规模组织生产而得到广泛的应用,成为诸多生产工艺中最主要的生产方法。悬浮聚合法的典型生产工艺过程是将单体、水、引发剂、分散剂等加入反应釜中,加热,并采取适当的手段使之保持在一定温度下进行聚合反应,反应结束后回收未反应单体,离心脱水、干燥得产品。 工艺特点:悬浮聚合法生产聚氯乙烯树脂的一般工艺过程是在清理后的聚合釜中加入水和悬浮剂、抗氧剂,然后加入氯乙烯单体,在去离子水中搅拌,将单体分散成小液滴,这些小液滴由保护胶加以稳定,并加入可溶于单体的引发剂或引发剂乳液,保持反应过程中的反应速度平稳,然后升温聚合,一般聚合温度在4570之间。使用低温聚合时(如4245),可生
15、产高分子质量的聚氯乙烯树脂;使用高温聚合时(一般在6271)可生产出低分子质量(或超低分子质量)的聚氯乙烯树脂。近年来,为了提高聚合速度和生产效率,国外还研究成功两步悬浮聚合工艺,一般是第一步聚合度控制在600左右,在第二步聚合前加入部分新单体继续聚合。采用两步法聚合的优点是显著缩短了聚合周期,生产出的树脂具有良好的凝胶性能、模塑性能和机械强度。现在悬浮法聚氯乙烯品种日益广泛,应用领域越来越广,除了通用型的树脂外,特殊用途的专用树脂的开发越来越引起pvc厂家的关注,球形树脂、高表观密度建材专用树脂、消光树脂、超高(或超低)分子质量树脂等已成为开发的热点。1.3.2乳液聚合生产工艺氯乙烯乳液聚合
16、方法的最终产品为制造聚氯乙烯增塑糊所用的的聚氯乙烯糊树脂(e-pvc),工业生产分两个阶段:第一阶段氯乙烯单体经乳液聚合反应生成聚氯乙烯胶乳,它是直径0.13微米聚氯乙烯初级粒子在水中的悬浮乳状液。第二阶段将聚氯乙烯胶乳,经喷雾干燥得到产品聚氯乙烯糊树脂,它是初级粒子聚集而成得的直径为1100微米,主要是2040微米的聚氯乙烯次级粒子。这种次级粒子与增塑剂混合后,经剪切作用崩解为直径更小的颗粒而形成不沉降的聚氯乙烯增塑糊,工业上称之为聚氯乙烯糊。1.4最佳的配方、后处理设备的选择1.4.1配方的选择单体: 氯乙烯纯度99.98%以上。分散剂: 主分散剂主要是纤维素醚和部分水解的聚乙烯醇。纤维素
17、应为水溶性衍生物,如甲基纤维素、羟乙基纤维素、羟丙基纤维素等,聚乙烯醇应由聚醋酸乙烯酯经碱性水解得到,影响其分散效果的因素为其聚合度和水解度,而且-oh基团为嵌段分布时效果最好;副分散剂主要是小分子表面活性剂和地水解度聚乙烯醇。常用非离子型的脱水山梨醇单月硅酸酯。本设计采用88%聚乙烯醇和72.5%的聚乙烯醇。引发剂: 由于聚乙烯悬浮聚合温度5060度上下,应根据反应温度选择合适的引发剂,其原则为在反应温度条件下引发剂的半衰期约为2小时最佳。常用过氧化乙酰环己烷硫酰、过氧化二月桂酰、过碳酸二环己酯等。本设计采用过氧化二碳酸-2-乙基己酯。终止剂:反应结束后残余的自由基和引发剂残留在树脂内, 为
18、了保证产品质量, 需要消除它们, 故而加入终止剂。本设计的终止剂为丙酮缩氨基硫脲。当反应出现紧急事故时,采用紧急终止剂on终止反应。阻聚剂:本设计采用壬基苯酚作为阻聚剂。缓冲剂: 碳酸钠、三聚磷酸钠、磷酸钠、氢氧化钠、氢氧化钙、碳酸铵。本设计采用磷酸三钙。1.4.2后处理设备侧选择 聚合釜容积:工业化大生产使用问歇悬浮法聚合釜容量一般为60107立方米。我国已开发出70立方米聚合釜,样机已在锦西化工机械厂研制成功。本设计采用76立聚合釜。采用微机控制,提高了批次之间树脂质量的稳定性,且消耗定额低。传热方式: 传热能力直接影响着聚合反应的速度和生成物的质量,也影响着产量。在大型聚合釜上,国外采用
19、了体外回流冷凝器,体内增设内冷管等除热手段。近几年,美国古德里奇公司又研制出一种薄不锈钢衬里聚合釜,以便提高釜壁的传热能力,为使薄壁能承受反应压力,在不锈钢衬里与聚合釜套之间安装了支撑内衬套的加强筋,这种釜的结构大大提高了聚合釜传热效率,且有较好的承压能力9。 搅拌方式 : 搅拌能力是聚合釜的关键技术指标之一,搅拌能力直接影响着传质、传热及树脂的粒态分布,最终影响产品的质量,而不同的工艺方法对搅拌的要求又不尽相同。过去,pvc聚合釜大都采用平桨和折叶桨,搅拌效果不甚理想。随着搅拌技术的不断进步及搅拌试验手段的不断提高,使我们有条件为pvc釜配备更理想的搅拌器。大量的搅拌实验研究证明,三叶后掠式
20、搅拌器的传质效果好,循环和剪切性能均适合于pvc生产的需要,因此,本设计在pvc生产中采用三叶后掠式搅拌器。 干燥系统 : 干燥系统发展迅速,主要有2 种方式, 即气流干燥和流态化干燥。我国pvc工业化生产最初主要用的是气流干燥器,但是随着聚合工艺技术的发展, 聚合生产能力提高, 树脂产品也朝着疏松型发展, 气流干燥器从生产能力和干燥效果等方面已经不能满足生产的需要,后来发展到气流干燥器, 沸腾床干燥器和冷风冷却3段干燥技术。但这样动力消耗大, 产品质量不是很好。目前主要用的是旋风干燥器和卧式内加热流化床。旋风干燥器结构简单, 投资较少, 目前很多装置都在用。卧式内加热流化床综合能耗比旋风干燥
21、器要低, 主要有多室沸腾床和两段沸腾床2 种。但在生产中发现多室沸腾床的花板容易漏料, 不同牌号切换时比较麻烦, 且生产能力有限。两段流化床改进了, 操作稳定性好, 易于产品牌号的切换, 生床的花板产能力较大。 本设计中采用卧式内加热流化床。离心机:对浆料进行离心脱水,得到含水量25%的聚氯乙烯。pvc生产过程中需要大量的逻辑判断和离散控制,因此本设计采用二位式控制组件,如通/断式二位开关阀控制各种物料的传输,和二位控制的电机和泵机。气体塔:汽提技术及设备也有改进汽提塔朝着节能、高效的方向发展。现在常用的汽提塔主要有溢流堰筛板塔和无堰筛板塔, 有堰筛板塔传质传热仅在筛板上进行, 在板间移动时只
22、有传热没有传质, 而无堰筛板塔在塔内一直都在传质, 目前传热。因此无堰筛板塔效率高于有溢流堰的塔,无堰筛板塔的塔盘设计也逐渐合理科学化, 塔盘的厚度, 开孔率在实践中逐渐优化, 并被纳入设计体系中。很多无堰筛板塔塔盘是整体装卸的, 随着生产能力的提高, 设备 整体装卸很不方便, 目前, 生产能力较大的的增大汽提塔的塔盘, 可以采用可拆卸式的塔盘。汽提塔的塔顶操作压力也逐渐从微正压操作向微负压操作发展, 使得塔顶物料沸腾温度低, 节约了蒸汽却提高了单体脱出效率。为了强化汽提效果, 浆料经过汽提后利用重力作用进入闪蒸罐, 进一步汽提, 降温10。因此,本设计采用无堰筛板塔。1.5 防粘釜技术聚合釜
23、的防粘釜是聚合生产中最重要的工序之一。防粘釜效果好的釜, 能有较好的传热系数, 能减少因此产生的塑化片。防粘釜一直是聚合生产的重要工作, 这方面得到了很大的发展。首先, 聚合釜的表面抛光质量有了很大的提高且内件简单化、圆滑化。其次, 通过专用的设备使用高效的防粘釜剂, 实行聚合釜自动喷涂防粘釜液和自动水冲洗釜。釜涂布与水洗设备分开, 釜内设置双伸缩头自动喷洗高压水枪, 设定双固定或者可伸缩涂布设备(如费阀,喷吐环等)。目前, 先进的防粘釜技术是冲洗、喷涂与高效防粘釜剂的结合体。整个防粘技术过程全部采用dcs自动操作。首先打开蒸汽进料阀喷入适量的蒸汽, 用泵将已配制成规定浓度的涂壁剂注入蒸汽管路
24、, 借助蒸汽流速使其雾化进釜, 在釜壁形成一层均匀的疏油亲水膜, 在聚合过程中此膜有效地防止有机相与釜壁接触, 从而起到防粘釜的作用。为了达到较好的涂壁效果, 对于喷涂的蒸汽, 防粘釜剂的压力逐步优化, 对于防粘釜剂的量也根据釜的特点而定。涂壁完成后, 冷却一段时间使防粘釜剂更好地粘在釜上,之后用清洗水冲釜以彻底冲掉多余的防粘剂11。目前国内生产用的防粘釜剂主要有意大利黄, 美pvc国红, 英国蓝。经过实践, 意大利黄在防粘釜效果和对产品白度的影响方面有利于生产, 但价格较高。为了生产更高质量的聚乙烯,产品本设计采用意大利黄防粘釜剂。1.6原料及产品性能氯乙烯 : ch2=chcl 分子量 6
25、2.50 ,无色易液化的气体。液体的密度0912lgcm3。沸点-139。凝固点-160。自燃点472。临界温度142。临界压力55.2pa。难溶于水,溶于乙醇、乙醚、丙酮和二氯乙烷。易聚合,能与丁二烯、乙烯、丙烯、内烯腈、醋酸乙烯、两烯酸酯和马来酸酯等共聚。能与空气形成爆炸性混合物,爆炸极限36-264。遇明火、高温有燃烧爆炸的危险。 无空气和水分的纯氯乙烯很稳定,对碳钢无腐蚀作用。有氧存在时,氯乙烯过 氧化物,它可与水生成盐酸从而腐蚀设备,过氧化物还可以使氯乙烯产生自聚作用。长距离 运输时应加入阻聚剂氢醌。pvc树脂:密度1.4;工业品是白色或浅黄色粉末;低分子量的易溶于酮类、酯类和氯代烃
26、类溶剂,高分子量的则难溶;用于制塑料、涂料和合成纤维等。根据所加增塑剂的多少,可制成软质和硬质塑料。前者可用于制透明薄膜(如雨衣、台布、包装材料、农膜等)、人造革、泡沫塑料和电线套层等。后者可用于制板材、管道、阀门和门窗等;具有极好的耐化学腐蚀性,但热稳定性和耐光性较差,在100以上或长时间阳光暴晒开始分解出氯化氢,制造塑料时需加稳定及,电绝缘性优良。不会燃烧。分散剂聚乙烯醇:是一种高分子聚合物,无臭、无毒,外观为白色或微黄色絮状、片状或粉末状固体。分子式为(c2h4o)n,絮状pva的假比重为(0.21 0.30)g/cm3,片状pva的假比重为(0.470.06)g/cm3。 聚乙烯醇有较
27、好的化学稳定性及良好的绝缘性、成膜性。具有多元醇的典型化学性质,能进行酯化、醚化及缩醛化等反应。引发剂过氧化二碳酸(2乙基己基)酯 : 本品为无色透明液体,ehp活性氧2.70%,nacl含量0.20%;相对密度0.964。商品为50%65%的甲苯、二甲苯、矿物油溶液;理论活性氧含量4.62%。含量为46%的ehp溶液的半衰期为40,10.33h;50,1.5h;受热或见光易分解,储运温度15,时间少于3个月。1.7 聚合机理1.7.1链反应动力学机理 链反应动力学来看,根据转化率可分为三阶段: 转化率5%阶段。聚合反应发生在单体相中,由于所产生的聚合物数量甚少,反应速度服从典型的动力学方程,
28、聚合反应速度与引发剂用量的平方根成正比,当聚合物的生产量增加后,则聚合速度由于kt降低而发生偏差。 转化率5%65%阶段。聚合反应在富单体和聚氯乙烯单体凝胶中间是进行,并且产生自动加速现象。其原因在于链终止反应主要在两个增长的大分子自由基之间进行,而他们在粘稠的聚合物单体凝胶相的扩散速度显著降低,因而链终止速度减慢,所以聚合速度加快,呈现自动加速现象。 转化率65%阶段。转化率超过65%以后,游离的氯乙烯基本上消失,釜内压力开始下降,此时聚合反应发生在聚合物凝胶相中,由于残存的氯乙烯逐渐消耗,凝胶相得粘度迅速增高,因此聚合反应速度仍继续上升,大到最大值后逐渐降低。当聚合反应速率低于总反应速率以
29、后,使反应终止。1.7.2自由基聚合机理氯乙烯悬浮聚合反应,属于自由基链锁加聚反应,它的反应一般由链引发,链增长,链终止,链转移及基元反应组成。 链引发 过氧化物引发剂受热后过氧链断裂生成两个自由基:初级自由基与vcm形成单体自由基。 链增长 单体自由基具有很高的活性,所以打开单体的双键形成自由基,新的自由基活性并不衰减,继续与其它单体反应生成更多的链自由基。 链终止 聚合反应不断进行,当达到一定的聚合度,分子链己足够长,单体的浓度逐渐降低,使大分子的活动受到限制,就会大分子失去活性即失去电子而终 止与其它氯乙烯活性分子反应。终止有偶合终止和歧化终止。 l)偶合终止 两个活性大分子自由基相遇时
30、,两个自由基头部独立电子对配对形成共价键所形成的饱和大分子叫偶合终止。 2)歧化终止两个活性大分子自由基相遇时,其中一个自由基夺取另一个自由基上的氢原子而饱和,另一个高分子自由基失去一个氢原子而带有不饱和基团,这种终止反应的方式叫双基歧化终止。有时活性大分子自由基与金属器壁中的自由电子结合而终止,即形成粘釜。链转移 在氯乙烯聚合反应中,大分子自由基可以从单体,溶剂,一个氯原子或氢原子而终止,失去原子的分子将成为自由基,引发剂或大分子上夺取继续进行新的链增长反应。包括向单体的氯转移、向溶剂链转移、向引发剂链转移、向大分子。1.7.3 成粒机理与颗粒形态关于氯乙烯悬浮聚合过程生成多孔性不规整的理论
31、解释,认为成粒过程分为两部分;单体在水中的分散和发生在水相和氯乙烯水相界面发生的反应,此过程主要控制聚氯乙烯颗粒的大小及其分布。在单体液滴内和聚氯乙烯凝胶相内发生的化学与物理过程,此过程主要控制所得聚氯乙烯颗粒的形态。 在聚合反应釜中液态氯乙烯单体在强力搅拌和分散剂的作用下,被破碎为平均直径3040m的液珠分散于水相中,单体液珠与水相得界面上吸附了分散剂。当聚合反应发生以后,界面层上的分散剂发生氯乙烯接枝聚合反应,使分散剂的活动性和分散保护作用降低,液珠开始由于碰击而合并为较大粒子,并处于动态平衡状态。此时单体转化率约为4%5%。当转化率进一步提高,达到20%左右后,由于分散剂接枝反应的色深入
32、,能够阻止粒子碰击合并,所以所得聚氯乙烯颗粒数目开始处于稳定不变的状态,因而此后的搅拌速度对于产品的平均粒径不再发生影响。最终产品的粒径在100180m范围,个商品牌号的粒径个有其具体范围,取决于生产的聚氯乙烯树脂用途、分散剂类型、用量和反应起始阶段的搅拌速度等参数。通常是使用的分散剂浓度高,则易得空隙率低(10%)的圆球状树脂颗粒,尤其是使用明胶作为分散剂是,其影响最为明显。由于地孔隙率树脂的反应结束后,脱除残存的单体较困难,而且吸收增塑剂速度慢,难以塑化所以逐渐淘汰。产品的平均粒径因不同用途而有所不同要求:用于生产软质制品的聚氯乙烯树脂平均粒径要求低些在100130m左右;用于生产硬质制品
33、者要求在150180m范围;分子量较低的牌号则要求在130160m范围。此数据不能绝对化,因工厂生产条件的不同而有所不同。转移。1.8影响聚合及产品质量的因素 因素有搅拌、分散剂、聚合温度等,结合树脂的成粒过程等。 搅拌:在悬浮聚合过程中,搅拌对聚氯乙烯树脂颗粒形态的影响主要表现在影响pvc树脂的粒径及分布、孔隙率等,但搅拌的作用与分散剂的性质互相影响、互相补充。增加搅拌度将使悬浮分散体系内液滴变细,pvc树脂平均粒子变小,但搅拌强度过大,又将促使体系内液滴碰撞聚并,使pvc树脂的平均粒径变大。pvc树脂平均粒径与搅拌转速的关系曲线呈马鞍形。随着搅拌转速的增加,能使聚氯乙烯树脂的初级直径变小,
34、孔隙率增加,吸油率增大。 分散剂:在搅拌特性固定的条件下,分散剂种类、性质和用量则成为控制树脂颗粒性的关键因素。在聚合过程中,分散剂影树脂颗粒的宏观微观两层次的成粒。就宏观而言,要求分散剂应具有降低单体和的界面张力,以利于vcm的分散和保护滴或颗粒,减少聚并。单一分散剂较难同时满足上两方面要求,为制得颗粒规整、粒度分布中,既疏松表观密度又适合的聚氯乙烯脂,往往将两种和两种以上分散剂复合用。其中一分散剂以降低界面张力、提高散能力为主,另一则保证有足够的保能力。有时为了满足特殊性能要求,在此础上再添加油溶性辅助分散剂或表面活剂,调节分散剂在vcm中的分配系数,使散剂的作用深入到颗粒的微观层次12。
35、 聚合温度:在vc悬浮聚合中不存在链转移剂时,聚氯乙烯的分子量几乎取决于聚合温度,按照生产树脂牌号的要求,聚合温度一般在4565范围内选择。在较高温度下聚合,树脂粒径增长减慢,最终平均粒径减小。聚合温度对聚氯乙烯树脂颗粒形态的影响主要表现在温度对pvc树脂的孔隙率有影响。聚合温度低,形成的树脂结构较疏松;高温下聚合由于初级粒子熔合成团以及初级粒子聚集体的紧密堆砌排列,从而制得的pvc树脂孔隙率较低,这是因为随着聚合温度的升高,初级粒子变少,熔结程度加深,粒子呈球形,而聚合温较低时,则容易形成不规则的聚结体,从而使孔隙率增加。通过以上的理论了解更加深了对聚合反应的理解。 汽提控制的影响:汽提工艺
36、主要影响聚氯乙烯树脂中单体残留量和杂质粒子数等指标。所谓聚氯乙烯树脂残留vcm的含量是指聚氯乙烯树脂之中所吸附或溶解的未聚合的vcm,由于vcm和聚氯乙烯的大分子结构,导致相互间具有较大的亲和力,这也是残留vcm难以完全脱除的原因。1.9工艺流程叙述1.9.1加料系统 (1) vcm的贮存与加料:从vcm车间运送来的新鲜单体vcm,经过过滤器进入vcm贮槽中贮存,同时由vcm回收工序来的回收vcm贮存在回收vcm贮槽中。用vcm泵从两个贮槽抽料、并经过vcm加料过滤器过滤,加入聚合釜。加料时泵先加回收单体,泵后加新鲜单体,回收和新鲜单体有一定配比。(2) 脱盐水的贮存与加料:脱盐水经计量进入冷
37、脱盐水贮槽中。加料时,用脱盐水加料泵经过管道流量计计量后打入聚合釜中, (3) 助剂的配制及加料: 缓冲剂系统缓冲剂是在配制槽中配制,配制时需1530分钟,不设单独贮槽,加缓冲剂时,计算机程序关闭循环线,打开充料伐,经充装泵,将缓冲剂加到称重槽中到规定时间用加料泵加入到聚合釜中,同时重新使用循环系统使缓冲剂配制槽中物料续循环。 分散剂系统 本设计采用两种分散剂混合使用。 分散剂a:分散剂在配制槽中配制,分散剂加料时,先将分散剂打入计量槽(此时循环已停),达到定量后,启动循环系统,同时计量槽中分散剂用充装泵打入聚合釜。分散剂b:配置过程如分散剂,然后将配制好的分散剂放入分散剂贮槽中单独贮存,同样
38、有个冷冻盐水冷却并用充装泵循环。此溶液搅拌较强烈,以防分散剂分离。 调节剂的配制调节剂在有局部搅拌的调节剂贮槽内贮存,加料时用调节剂充装泵计量加入聚合釜,此管线带压无需冲洗。 引发剂系统引发剂在引发剂配制槽中配制,配制合格后放入引发剂贮槽中贮存待用。引发剂贮槽用冷却水冷却到规定的低温,搅拌并用循环泵打循环。加引发剂时,先由贮槽放到引发剂称重槽中,然后用加料泵定量加入聚合釜内。 终止剂系统终止剂在带搅拌和排空装置的不锈钢容器中配制,先将定量的脱盐水和naoh加入到终止剂配制槽中,开动搅拌后将定量的终止剂加入到配制槽中,当聚合达到规定转化率时,需加终止剂。加终止剂时,按规定的程序,用终止剂充装泵从
39、终止剂贮槽中抽出,配方量的终止剂经计量后从注入管加入聚合釜,加终止剂时应关闭注入水切断阀,加完终止剂后应关闭聚合釜终止剂阀及终止剂泵出口阀,停泵。事故终止剂no,在停车或停电等紧急情况下加入聚合釜、迅速终止聚反应。1.9.2聚合系统 若聚合釜打开过釡盖,则需抽真空真空度为710mmhg柱,将缓冲剂加到脱盐水总管内,然后用脱盐水把缓冲剂带入到聚合釜。脱盐水启动后,加入vcm、开动搅拌,当脱盐水和vcm加完后,釜内温度应接近聚合温度,继续搅拌一定时间,使vcm液滴在水中形成,然后加入分散剂,继续搅拌一定时间,以保证分散体系形成,最后加入引发剂,使聚合反应开始。 聚合反应开始后,向挡板通入冷却水并达
40、到最大流量,然后向夹套中通入冷却水,并保持反应温度,冷却水流量由计算机根据聚合釜上、中、下温度控制,同时计算机计算出反应放出的热量,并与聚氯乙烯聚合动力浮模型的理论计算值比较,计算出vcm到pvc的转化率。 聚合反应开始后,两股注入水应加入聚合釜,以保证釡内容积恒定,一股注入水来自聚合釜搅拌器的轴封衬套、另一股由釡顶注入。 聚合反应终点,可依据反应时温度或测定单体转化率及根据压力降来确定,通常按压力降来确定,当聚合反应到达终点时,定量的终止剂将自动加入到聚合釜内以终止聚合反应。1.9.3回收系统(1)浆料汽提系统由汽提塔浆料槽底部来的浆料,经块料破碎机破碎后,用汽提塔供给泵经板式换热器与汽提完
41、毕的浆料换热,一部分从塔顶加入汽提塔,另一部分回流到浆料槽,同时蒸汽由汽提塔底部进入; vcm由蒸汽汽提带走。塔釜浆料由塔底浆料泵送出,并与浆料槽来的浆料换热后,一部分送到浆料混料槽,另一部分返回塔釜液位同时防止浆料中pvc沉降,汽提完毕的浆料中,vcm残留量在30ppm左右,塔顶出来的含vcm的蒸汽,用冷凝器冷凝,由分离器分离,冷凝液用分离器底泵送至废水贮槽(57),未凝的汽提经过滤器过滤,送至vcm回收工序,浆料送至干燥工序。(2)废水汽提系统这些废水贮存在废水贮槽中,由塔底泵打出与废水汽提塔底出来的热水换热器后,一部分由塔顶加入废水汽提塔中,另一部分循环,同时蒸汽由塔底加入与废水进行传质
42、交换后,废水中vcm提出并由塔顶带走,随后进入塔顶冷凝器冷凝,不凝液去压缩机压缩回收,冷凝液回收到废水贮槽,废水汽提塔塔釜的废水用泵打出,经换热器换热后进入废水池,并与离心机母液,一起排除界区。(3)vcm回收系统 聚合反应结束后,未反应的vcm,一部分随浆料进入汽提塔加料槽,这部分vcm从槽顶出来,经汽液分离器除去水分,并经过滤器过滤后用压缩机升压至0.35mpa以上,送至回收冷凝器中;另一部分是残留在聚合釜中的单体,这部分未反应的单体是在聚合釜出料达50m3时回收,在塔顶压力大于0.35mpa时,单体进入回收冷凝器,当釡顶压力小于0.35mpa时,启动间断回收压缩机,把单体压缩送到冷凝器,
43、经浆料汽提,废水汽提等来回收vcm。1.9.4干燥系统混料槽的pvc浆料,用浆料泵送至沉降式离心机,超过离心机能力的部分浆料返回混料槽,这两个槽有保温系统同时槽底部还有氮气和蒸汽管路,通过槽中以便搅拌或清洗换型时用。浆料经离心机分离,母液进入母液池沉降后排放,滤饼用螺旋输送器输送沸腾干燥床内,用热风热水来脱除树脂内部水分。干燥所用的热风使用主风机加入,主风机皆有过滤器,洁净的空气用加热器加热后,从沸腾床底部进入干燥器。干燥所需冷风,由冷风机经空气过滤器过滤后进入沸腾床六室。干燥好的树脂由星型加料器和排风机抽至旋风分离器,使气固相分离,气相在用2#双筒旋风分离器分离,气体排空,两个分离器分离出的
44、树脂经双重阐和星型加料器进入圆型振动筛进行筛分,合格的成品进入中间料仓然后由工人包装送至仓库。第二章 工艺计算2.1物料衡算2.1.1聚合釜(1)物料平衡图 图1 聚合釜物料平衡图(2)已知数据釡有效容积v有效=68m3装料系数=0.874转化率x%=85%水油比1.31收率=99%热负荷分布指数 r=1.21.4(r取1.3)夹套传热系数k夹套=510kcal/ m2 hr挡板传热系数k挡板=946kcal/ m2 hr夹套进出口水温:t进=7 t出=12挡板进出口水温:t进=7 t出=15夹套传热面积:f夹套=80 m2挡板传热面积:f挡板=18 m2注入水温度t=20 聚合温度t=57假
45、定聚合釡回收的vcm占未反应单体的85%(3)计算 单体及水加入量计算单体密度60=0.8363g/cm3 50=0.8564g/cm3根据内差法求出57时单体的密度:57=(57-60) /(50-60)(0.8564-0.8363)+0.8363=842.3kg/ m3水的密度60=988.1kg/ m3 50=983.2kg/ m3用内差法求出57时水的密度:57=986.6kg/ m3设单体加入量为x m3/釡 水加入量为y m3/釡釡有效容积v有效=68m3,装料系数=0.874,水油比1.31列方程组 x+y=680.874 (水57y)/(单体57x)=1.31解得:x=28.1
46、4 m3/釡 y=31.29m3/釡 注入水用量注入水体积 v=cw12(1-2)式中 c: 单体vcm转化率 w:vcm加入量(质量kg) 1 2 分别是单体和pvc树脂密度v=85%28.14842.3(84203-1400)(842.31400)=9.53m3/釜由已知注入水温20,此时水20=998.2kg/m3 注入水量为9.53988.2=9512.8kg/釜 聚合反应时间a 夹套传热量=传热面积传热系数tm夹tm夹=(57-7)-(57-12)/ln(57-7)-(57-12)=47.5q夹=5108047.5=1.938106kcal/hb 同理可计挡板传热量q挡=f挡k挡tm
47、挡tm挡=(57-7)-(57-15)/ln(57-7)-(57-15)=45.9q挡=9461845.9=7.816105kcal/hc 注入水流量 q注=cpwt注入水温由20升到57平均水温t平均=(20+57)/2=38.5注入水比热容cp20=4.183kj/(kg)cp40=4.174kj/(kg)其平均比热容cp平均=4.180kj/(kg)=0.997kmol/(kg)q注=0.9979512.8/反37=350917.679/反最大移热量qmax=q夹+q挡+q注=2719585.2+350917.679/反物料总放热量 q总=gx%h加入总物料量 g=28.14842.3=
48、23702.3kghx=366kcal/kgvcm x%为转化率取热负荷指数 r=1.3r=(qmax-反)/q总反=rq总/qmax=1.323702.30.85366/(2719585.2+350917.679)=3.4h 引发剂用量引发剂用量 nr=n0(1-i/i0)=n0(1-e-0.693/1/2)n0=nr(1-e-0.693/1/2)引发剂的理论消耗量取nr1.1mol/tvcm引发剂的半衰期 ln1/2=a/t-b式中 a=15108 b=45.484 t=273.15+57=330.154ln1/2=15108/330.15-45.484=0.2771/2=1.32hn0=
49、nr(1-e0.69333.4/1.32)=1.32mol/tvcm实际加入量ehp量(分子量346):1.32346842.328.14106=10.83kg/釜 缓冲剂用量缓冲剂=单体3.5/104缓冲剂用量=(3.5/104)28.17842.3=8.30kg/釜 分散剂用量88% pva 4.8kg72.5% pva 11.238kg 终止剂(atsc)atsc=i/2=10.83/2=5.41kg/釜出料(以釜为标准)出料中的pvc量:28.14842.30.850.99=19945.5kg损失的pvc量:28.14842.30.850.01=201.5kg未反应vcm:28.148
50、42.30.15=3555.3kg脱盐水:31.29984.7=30811.3kg回收vcm:28.14842.30.150.85=3022kg剩余vcm:3555.3-3022=533.3kg(4)物料平衡表 表一 物料衡算表序号 品名 进料量(kg) 出料量(kg) 1 vcm 23702.3 回收3022 剩余533.3 2 pvc 19945.5 损失201.53 脱盐水 30811.3 30811.34 4 注入水 9512.8 9512.85 ehp 10.83 10.836 atsc 5.41 5.417 缓冲剂 8.30 8.308 分散剂 16.038 16.038 合计 64066.9783 64066.9782.1.2 混料槽(1)物料平衡图 图2 混料槽物料平衡图(2)已知数据进料pvc:19945.5kg 收率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 儿科护理学考试题及答案
- 部编人教六年级上册道德与法治教案含教学反思
- 阳江分布式光伏项目可行性研究报告
- 黄花深加工实施方案
- 广西中考物理5年(2021-2025)真题分类汇编:专题17 信息的传递与能源与可持续发展(原卷版)
- 2020-2025年初级银行从业资格之初级风险管理押题练习试题A卷含答案
- 山洪灾害预防指南
- 武炼巅峰 协议书转折
- 房屋继承遗产协议书
- 网络协议书哪个最快
- 高考成语专项训练
- 2025上海市生物医药技术研究院招聘专技人员2人考试参考题库及答案解析
- 滴灌课件教学课件
- 2025年金沙县国有资本投资运营集团有限公司招聘考试笔试试题含答案
- 2025-2026冀人版(2024)科学一年级上册教学设计及教学反思(附目录)
- 2025放射工作人员培训考试试题(附答案)
- 医疗器械质量管理体系文件大全
- 冬季水上交通安全培训课件
- 达芬奇调色培训课件
- 2025山东能源集团中级人才库选拔笔试历年参考题库附带答案详解
- 现场液位计培训
评论
0/150
提交评论