




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、管路沿程阻力系数测定实验1.为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影 响实验成果?现以倾斜等径管道上装设的水银多管压差计为例说明(图中aa为水平线)如图小o 。为基准面,以1 1和2 2为计算断面,计算点在轴心处,设v1 v2 ,hj 0 ,由能量方程可得hf1 2p1z2p2p1-p2 h2 13.6 h2h2h 13.6 h1 h h1p2h2 12.6 h2 12.6 h1h1hf1 2 z1hl z2 h212.6 h2 12.6 h112.6( h1 h2)这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。2 .据实测m值判别本实验的流动型态和流区。l
2、ghflgv曲线的斜率 m=1.01.8,即hf与v1.0 1.8成正比,表明流动为层流(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。3 .本次实验结果与莫迪图吻合与否?试分析其原因。通常试验点所绘得的 我色“工曲线处于光滑管区,本报告所列的试验值,也是如此。 但是,有的实验结果 五也比相应点落到了莫迪图中光滑管区的右下方。 对此必须认真 分析。如果由于误差所致,那么据下式分析d和q的影响最大,q有2%误差时,兄就有4%的误差,而d有2%误差时,工可产 生10%的误差。q的误差可经多次测量消除,而 d值是以实验常数提供的,由仪器制作 时测量给定,一般 1%。如果排除这两方面的误差,
3、实验结果仍出现异常,那么只 能从细管的水力特性及其光洁度等方面作深入的分析研究。还可以从减阻剂对水流减 阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。总之,这是 尚待进一步探讨的问题。管路局部阻力系数测定实验三、实验分析与讨论1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系:1)不同r的突扩e e是否相同?2)在管径比变化相同的条件下,其突扩ee是否一定大于突缩e s?由式2hjv2g及表明影响局部阻力损失的因素是突扩:di. d2v和di/d2 由于有2aia2突缩:s 0.5 1 3a2则有1x s 0.51 a a20.5ke 1 a a21 a a2
4、当a . a2 0.5或d1d2 0.707q下,突然扩因而阻力损时,突然扩大的水头损失比相应的突然收缩的要大。在本实验最大流量大损失较突然缩小损失约大一倍,即hie/his 6.54/3.60 1.817。je : jsd/dz接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动, 失显著减小。2.结合流动仪演示的水力现象, 分析局部阻力损失机理何在?产生突扩与突缩局 部阻力损失的主要部位在哪里?怎样减小局部阻力损失?流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等 三十多种内、外流的流动图谱。据此对于局部阻力损失的机理分析如下: 从显示的图谱可见,凡流道边界突变处,
5、形成大小不一的漩涡区。漩涡是产生损失的 主要根源。由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的 自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速 度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就 造成了局部阻力损失。从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关, 扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位 在突扩断面的后部。而突缩段的漩涡在收缩断面均有。突缩前仅在死角区有小漩涡, 且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。可见产生突缩水头损失的 主要部位是在
6、突缩断面后。从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应 流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。如欲减小管道 的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆 角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的突然收缩实验管道使用年份长以后,实测阻力系数减小,主要原因也在这里。流体静力学实验三、实验分析与讨论1 .同一静止液体内的测压管水头线是根什么线?测压管水头指z p/ ,即静水力学实验仪显示的测压管液面至基准面的垂直高 度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压 管水
7、头线是一根水平线。2 .当pb0时,试根据记录数据确定水箱内的真空区域。pb 0,相应容器的真空区域包括以下三个部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域, 均为真空区域。(2)同理,过箱顶小不杯的液面作一水平面,测压管 4中,该平面以上的水体亦 为真空区域。(3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。3 .若再算一根直尺,试采用另外最简便的方法测定最简单的方法,是用直尺分别测量水箱内通
8、大气情况下,管5油水界面至水面和油水界面至油面的垂直高度 h和ho,由式whw oho ,从而求得0。4 .如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差, 毛细高度由下式计算,4 cosh d式中,为表面张力系数;为液体容量;d为测压管的内径;h为毛细升高。常温的水,0.073n/m ,0.0098 n/m3。水与玻璃的浸润角很小,可以认为cos1.0。于是有h 29.7/d(h、d 均以 mm计)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机下班玻璃作
9、测压管时,浸润角 较大,其h较普通玻璃管小。如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。5 .过c点作一水平面,相对管 1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部液体是同一等压面?不全是等压面,它仅相对管 1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列 5个条件的平面才是等压面:(1)重力液体;(2)静止;(3) 连通;(4)连通介质为同一均质液体; (5)同一水平面。而管 5与水箱之间不符合条 件(4),相对管5和水箱中的液体而言,该水平面不是水平面。6 .用图1.1装置能演示
10、变液位下的恒定流实验吗?观闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定水流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的降低与空气补充使 箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医 学上称这为马利奥特容器的变液位下恒定流。7 .该仪器在加气增压后,水箱液面将下降8而测压管液面半升高h,实验时,若以p0=0时的水箱液面作为测量基准 ,试分析加气增压后,实际压强(h+ 8 )与视压强h的相 对误差值.本仪器测压管内径为 0.8cm,箱体内径为20cm.答:加压后,水箱液面比基准面下降了 8 ,而同时测压管1、2的液面各比基准面升高了 h,由水量平衡原
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论