




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、数学理论复习数学理论复习1、线性方程组a xa xa xba xa xa xba xaxaxbnnnnmmmnnm11 11221121 1222221 122记为记为 A x = b 其中A =(aij)mn x = (x1, ,xn), b = (b1, , bm)若秩(A) 秩(A,b),则无解;若秩(A) = 秩(A,b) = n, 存在唯一解;若秩(A) = 秩(A,b) n, 存在无穷多解; 通解是齐次线性方程组 Ax=0 的基础解系与 Ax=b 的一个特解之和。对于线性方程组 Ax = b:Ax = 0 称为齐次的线性方程组高斯消元法对于线性方程组 Ax = b (A | b
2、) 行变换(U| v )其中U是行简化阶梯形矩阵(1) 阶梯形矩阵(2) 每行首个非零元素为1,并且该1所在列其 它元素都为0 2、逆矩阵方阵A称为可逆的,如果存在方阵B,使A B = B A = E,记 B = A-1方阵A可逆的充分必要条件:A0求逆矩阵方法: A-1 =A*/|A| 这里A*为A的伴随矩阵 (A E) 行变换(E A-1)3、特征值与特征向量对于方阵A,若存在数和非零向量x 使 A x = x,则称为A的一个特征值,x 为A 的一个对应于特征值的特征向量。特征值计算归结为:特征多项式|A - E|=0的求根。对应于特征值的特征向量是齐次线性方程组 (A - E) x =
3、0的所有非零解二、使用二、使用MATLAB det 方阵的行列式 diag 对角阵inv 方阵的逆 cond 方阵的条件数trace 方阵的迹 orth 正交规范化rank 矩阵的秩 null 求基础解系rref 矩阵的行最简形eig 特征值与特征向量jordan 约当标准形分解norm 矩阵或向量范数1、特殊矩阵生成zeros(m,n) 生成m行n列的零矩阵;ones(m,n) 生成m行n列的元素全为1的阵;eye(n) 生成n阶单位矩阵;当A是矩阵,diag(A)返回A的对角线元素构成的向量;当X是向量,diag(X)返回由X的元素构成的对角矩阵;rand(m,n) 生成m行n列0,1上均
4、匀分布随机数矩阵;linspace(x1,x2,n) 生成x1与x2间的n维等距行向量,即将x1,x2 n-1等分。2、行列式和逆矩阵det(A) 返回方阵A的行列式;inv(A) 返回A的逆矩阵。3、矩阵除法左除法 AB 求解矩阵方程AX=B右除法 B/A 求解矩阵方程XA=B(1) 当A为方阵,AB与inv(A)*B基本一致: (2) 当A不是方阵,除法将自动检测。 若方程组无解,除法给出最小二乘意义上的近似解,即使向量AXB的长度达到最小; 若方程组有无穷多解,除法将给出一个具有最多零元素的特解; 若为唯一解,除法将给出解。4、特征值和特征向量D=eig(A) 返回方阵A的特征值构成的列
5、向量;V,D=eig(A) 返回方阵A的特征值构成的对角阵D和每个特征值对应的特征向量按列构成的矩阵V。其中每个特征向量都是模等于1的向量,并且属于同一特征值的线性无关特征向量已正交化。例1 解下列方程组42312yxyx42312zyxzyxA=1 2;3 -2; B=1;4;x=AB 求得唯一解A=1 2 1;3 -2 1; B=1;4;x=AB 求得一特解242312yxyxyx24212yxyx A=1 2;3 -2;1 -1; B=1;4;2;x=A B 求得一最小二乘近似解A=1 2;-2 -4; B=1;-2;x=AB 不能直接求解A=1 2;-2 -4;0 0; B=1;-2;
6、0;x=AB仍可求一近似特解增加方程 0 x+0y=0例2 线性方程组的通解12211432143214321xxxxxxxxxxxx解 在无穷多解情况下可用三种方法求通解, 用rref化为行最简形以后求解;用除法求出一个特解,再用null求得一个齐次组的基础解系;用符号工具箱中的solve求解。a=1 -1 1 -1;-1 1 1 -1;2 -2 -1 1;b=1;1;-1; r=rank(a),rank(a,b); x0=ab,xx=null(a); % x0为一特解,xx为对应齐次组的基础解系运行后得:r=(2,2) 说明系数矩阵秩和增广矩阵秩相等,自由未知量为4-2=2个0010 x0
7、=-0.7071 0-0.7071 0-0.0000 0.7071-0.0000 0.7071xx=方法一方法一:方程组的解=特解+对应齐次组的通解7071.07071.0000 0 0.7071-0.7071-010021ccx其中c1和c2为任意实数结果为结果为:t=1 -1 0 0 00 0 1 -1 10 0 0 0 0a=1 -1 1 -1;-1 1 1 -1;2 -2 -1 1;b=1;1;-1; r=rank(a),rank(a,b); t=rref(a,b); % 此时得出一个行简化阶梯形矩阵 解法二:运行后得:从而知原方程组等价于从而知原方程组等价于104321xxxx虚线为
8、等号虚线为等号1100,001110,0142得两基础无关解分别取值为令自由未知量,xx0100,0042得一特解取值为令自由未知量xx110000110100214321ccxxxx结果为结果为:其中c1和c2为任意实数104321xxxx对004321xxxx对导出组例3 判定下列线性方程组是否有解?若有解,求出其解4325322) 1 (321321321xxxxxxxxx8325322)3(321321321xxxxxxxxx032325322)2(321321321xxxxxxxxx a=2 -2 3;-1 1 -2;1 -1 1; b=5;3;4 ; r1=rank(a); r2=
9、rank(a,b)r1 r2无解唯一解(2) a=2 -2 3;-1 1 -2;2 -3 1; b=5;3;0; r1=rank(a); r2=rank(a,b) r1 = r2=3x=ab 或x=inv(a)*b (3) a=2 -2 3;-1 1 -2;1 -1 1 ; b=5;3;8; r1=rank(a); r2=rank(a,b)r1 = r2=23x0=ab x=null(a1) %运行后得基础解x=(0.7071, 0.7071,0) 无穷解经运行发现无法解出经运行发现无法解出x0因此给原方程组加因此给原方程组加一个方程一个方程0 x1+0 x2+0 x3=0a1=2 -2 3;
10、-1 1 -2;1 -1 1;0 0 0 ;b1=5;3;8;0;x1=a1b1; %经运行后可得出一个特解x1=(0,-19,-11)结果为结果为:07071. 07071. 011190321cxxx其中c为任意实数三、国民经济投入产出分析三、国民经济投入产出分析 设有n个经济部门,xi为部门i的总产出,cij为部门j单位产品对部门i产品的消耗,di为外部对部门i的需求,fj为部门j新创造的价值。那么各经济部门总产出应满足下列关系式:消耗平衡方程组xxcfjjijinj1j=1,2,n令 C =(cij),X = (x1, , xn) ,D = (d1, , dn),F= (f1, , f
11、n)则 X=CX+D令 A = EC,E为单位矩阵,则 AX = DC称为直接消耗矩阵,A称为列昂杰夫(Leontief)矩阵。分配平衡方程组xc xdiijjnji1i =1,2,nY = 1,1,1 BY表示各部门的总投入,称为投入向量。新创造价值向量 F=X Y B=CB表示各部门间的投入产出关系,称为投入产出矩阵。xxxn12四、实验例题 例4 某地有三个产业,一个煤矿,一个发电厂和一条铁路,开采一元钱的煤,煤矿要支付0.25元的电费及0.25元的运输费; 生产一元钱的电力,发电厂要支付0.65元的煤费,0.05元的电费及0.05元的运输费; 创收一元钱的运输费,铁路要支付0.55元的
12、煤费和0.10元的电费,在某一周内煤矿接到外地金额50000元定货,发电厂接到外地金额25000元定货,外界对地方铁路没有需求。解:这是一个投入产出分析问题。设x1为本周内煤矿总产值,x2为电厂总产值, x3为铁路总产值, 则xxxxxxxxxxxx11232123312300 65055500000 250 05010250000 250 0500(.)( .)( .) 问三个企业间一周内总产值多少才能满足自身及外界需求?三个企业间相互支付多少金额?三个企业各创造多少新价值?直接消耗矩阵C= 02500050000外界需求向量 D =产出向量X = xxx123006505502500501
13、00250050.则原方程为则原方程为 (E-C)X=D 投入产出矩阵为 B=C*diag(X)总投入向量 Y= ones(1,3)*B 新创造价值向量 F=X-YMatlab程序:C=0 0.65 0.55;0.25 0.05 0.1;0.25 0.05 0;D=50000;25000;0;A=eye(3)-C;X=AD; %总产出矩阵向量B=C*diag(X); %投入产出矩阵Y=ones(1,3)*B; %总投入向量F=X-Y %新创造价值向量 消耗部门外界需求煤矿电厂铁路生产部门煤矿0365061558250000电厂255222808283325000铁路25522280800新创造
14、的价值 51044140419915总产出1020885616328330投入产出分析表例4 (隐性病遗传)染色体遗传中,后代是从父母体的基因对中各继承一个基因,形成自己的基因型。如果所考虑的遗传特征是由两个基因A和a控制,那么就有三种基因型,父 母概率AA-AA AA-AaAA-aaAa-AaAa-aaaa-aaAA11/201/400Aa01/211/21/20后代aa0001/41/21上表给出父母基因型的所有可能组合使其后代形成每种基因对的概率。设金鱼某种遗传病染色体的正常基因为A,不正常基因为a, 那么AA,Aa,aa分别表示正常金鱼,隐性患者,显性患者。设初始分布为90%正常金鱼,
15、10%的隐性患者,无显性患者。考虑下列两种配种方案对后代该遗传病基因型分布的影响方案一:同类基因结合,均可繁殖;方案二:显性患者不允许繁殖,隐性患者必须与正常金鱼结合繁殖解 设初始分布X(1)=(0.9 0.1 0),第n代分布为X(n)=)(3)(2)(1nnnxxxA =B=14/1002/1004/1100002/1002/11则 X(n) = An-1X(1) X(n) = Bn-1X(1) 分别是 两种情况下第n代的基因型分布AAAaaaMatlab程序:方案一:A=1 1/4 0;0 1/2 0;0 1/4 1;x=0.9 0.1 0;for i=2:20 x=A*x;endx20
16、=x方案二:clear;B=1 1/2 0;0 1/2 0;0 0 0;y=0.9 0.1 0;for i=2:20 y=B*y;endy20=y运行程序后得结果x20=(0.9500,0.0000,0.0500)y20=(1.0000,0.0000,0.0000)可见按方案:很多代以后将出现5%的稳定显性患者按方案:很多代以后显性患者将趋于消失方案体现了杂交的优势补充内容 解的误差分析解的误差分析u 解的误差分析解的误差分析对于实际问题导出的方程组对于实际问题导出的方程组 Ax =b ,系数矩阵系数矩阵A与向与向量量b往往带有误差(扰动),下面讨论往往带有误差(扰动),下面讨论A或或b的微小
17、变的微小变化对解化对解x的影响。的影响。 21,22,01. 1111xxxbA解线性方程解线性方程Ax =b 201.122121xxxx即求解线性方程组即求解线性方程组例例:可得出解为可得出解为, 0, 221 xx若方程右端变为若方程右端变为 01. 22b, 则方程的解变为则方程的解变为1, 121 xx 可见可见x对对b的的扰动敏感扰动敏感第一讲矩阵和线性方程组从图可以看出,原从图可以看出,原方程组对应的两条方程组对应的两条直线(红与黑)交直线(红与黑)交于(于(2,0)点,但)点,但由于两直线几近平由于两直线几近平行,所以当第二个行,所以当第二个方程有微小变化方程有微小变化(从(从2到到2.01)时,)时,交点变(交点变(1,1),),变化很大。变化很大。对对Ax = b = b ,如果解,如果解x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 象棋班课件教学课件
- 谢建新汽车构造课件
- 2025版外籍项目经理项目合作合同范本
- 2025版企业年会导演聘用合同
- 2025房地产合伙人合同:房地产大数据分析合作协议
- 2025年信息技术产品全国分销授权合同
- 2025年度石材工程承包与监理服务合同
- 2025年度房屋买卖合同纠纷解决条款范本
- 2025年度城市规划调整项目房屋拆迁补偿购房合同
- 2025年别墅吊顶定制与施工一体化合同
- 中级注册安全工程师《法律法规》试题及答案
- 2025年汽车转向系统行业需求分析及创新策略研究报告
- 2025年四川省成都市高新区事业单位招聘考试综合类面试真题模拟试卷
- GB/T 7251.10-2025低压成套开关设备和控制设备第10部分:规定成套设备的指南
- 2025年秋统编版语文二年级上册全册课件(课标版)
- 七下期末人教版数学试卷
- 2025新疆巴音郭楞州和硕县面向社会招聘社区工作者7人笔试参考题库附答案解析
- 2025年六安市裕安区石婆店镇公开招考村级后备干部8名笔试备考试题及答案解析
- 2025年事业单位考试题库及参考答案
- 2025年公安机关人民警察(基本级)执法资格等级题库及答案
- 物流客服培训课件
评论
0/150
提交评论