立体表面上点的投影_第1页
立体表面上点的投影_第2页
立体表面上点的投影_第3页
立体表面上点的投影_第4页
立体表面上点的投影_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、鹿泉市职业教育中心 机械化工系教学资源库机械制图课程教案第三章 立体表面交线的投影作图 31 立体表面上点的投影教案授课教师: 班级:机加14-1 时间:2014.9.1课 题:1、平面立体的投影及表面取点 2、曲面立体的投影及表面取点教学方法:讲授法教学目的:1、讲解平面立体和曲面立体的种类及其三视图画法 2、讲解在平面立体和圆柱体表面取点、取线的作图方法目的要求:1、能够熟练掌握平面立体和圆柱体的三视图画法2、能够熟练运用利用点所在的面的积聚性法和辅助线法在平面立体和圆柱体表面取点、取线教学重点:1、平面立体和曲面立体的种类及其三视图画法。 2、在平面立体和圆柱体表面取点、取线的作图方法教

2、学难点:在圆柱体表面取点、取线的作图方法教 具:基本体模型:三棱柱、四棱柱、五棱柱、六棱柱、三棱锥、四棱锥、圆柱体等【教学媒体和资源利用】多媒体课件【教学过程设计】组织教学引入新授小结学生练习作业教学过程备注组织教学目的是让学生进入学习状态。复习旧课1、 制图基本知识与技能2、 正投影作图基础引入机器上的零件,不论形状多么复杂,都可以看作是由基本几何体按照不同的方式组合而成的。基本几何体表面规则而单一的几何体。按其表面性质,可以分为平面立体和曲面立体两类。1、平面立体立体表面全部由平面所围成的立体,如棱柱和棱锥等。(出示模型给学生看)。2、曲面立体立体表面全部由曲面或曲面和平面所围成的立体,如

3、圆柱、圆锥、圆球等。(出示模型给学生看)。曲面立体也称为回转体。新授(一)平面立体的投影及表面取点1、棱柱棱柱由两个底面和棱面组成,棱面与棱面的交线称为棱线,棱线互相平行。棱线与底面垂直的棱柱称为正棱柱。本节仅讨论正棱柱的投影。(1)棱柱的投影 以正六棱柱为例。如图31(a)所示为一正六棱柱,由上、下两个底面(正六边形)和六个棱面(长方形)组成。设将其放置成上、下底面与水平投影面平行,并有两个棱面平行于正投影面面。上、下两底面均为水平面,它们的水平投影重合并反映实形,正面及侧面投影积聚为两条相互平行的直线。六个棱面中的前、后两个为正平面,它们的正面投影反映实形,水平投影及侧面投影积聚为一直线。

4、其他四个棱面均为铅垂面,其水平投影均积聚为直线,正面投影和侧面投影均为类似形。(a)立体图 (b)投影图图31 正六棱柱的投影及表面上的点边画图边讲解作图方法与步骤。总结正棱柱的投影特征:当棱柱的底面平行某一个投影面时,则棱柱在该投影面上投影的外轮廓为与其底面全等的正多边形,而另外两个投影则由若干个相邻的矩形线框所组成。(2)棱柱表面上点的投影 方法:利用点所在的面的积聚性法。(因为正棱柱的各个面均为特殊位置面,均具有积聚性。)平面立体表面上取点实际就是在平面上取点。首先应确定点位于立体的哪个平面上,并分析该平面的投影特性,然后再根据点的投影规律求得。举例:如图31(b)所示,已知棱柱表面上点

5、M的正面投影m,求作它的其他两面投影m、m。因为m可见,所以点M必在面ABCD上。此棱面是铅垂面,其水平投影积聚成一条直线,故点M的水平投影m必在此直线上,再根据m、m 可求出m。由于ABCD的侧面投影为可见,故m 也为可见。特别强调:点与积聚成直线的平面重影时,不加括号。第二课时2、棱锥(1)棱锥的投影 以正三棱锥为例。如图32(a)所示为一正三棱锥,它的表面由一个底面(正三边形)和三个侧棱面(等腰三角形)围成,设将其放置成底面与水平投影面平行,并有一个棱面垂直于侧投影面。由于锥底面ABC为水平面,所以它的水平投影反映实形,正面投影和侧面投影分别积聚为直线段abc 和a(c )b。棱面SAC

6、为侧垂面,它的侧面投影积聚为一段斜线sa(c),正面投影和水平投影为类似形sac 和sac,前者为不可见,后者可见。棱面SAB和SBC均为一般位置平面,它们的三面投影均为类似形。棱线SB为侧平线,棱线SA、SC为一般位置直线,棱线AC为侧垂线,棱线AB、BC为水平线。(a)立体图 (b)投影图 图32 正三棱锥的投影及表面上的点边画图边讲解作图方法与步骤。总结正棱锥的投影特征:当棱锥的底面平行某一个投影面时,则棱锥在该投影面上投影的外轮廓为与其底面全等的正多边形,而另外两个投影则由若干个相邻的三角形线框所组成。(2)棱锥表面上点的投影方法:1)利用点所在的面的积聚性法。2)辅助线法。首先确定点

7、位于棱锥的哪个平面上,再分析该平面的投影特性。若该平面为特殊位置平面,可利用投影的积聚性直接求得点的投影;若该平面为一般位置平面,可通过辅助线法求得。举例:如图32(b)所示,已知正三棱锥表面上点M的正面投影m 和点N的水平面投影n,求作M、N两点的其余投影。因为m 可见,因此点M必定在SAB上。SAB是一般位置平面,采用辅助线法,过点M及锥顶点S作一条直线SK,与底边AB交于点K。图32中即过m 作s k,再作出其水平投影sk。由于点M属于直线SK,根据点在直线上的从属性质可知m必在s k上,求出水平投影m,再根据m、m 可求出m。因为点N不可见,故点N必定在棱面SAC上。棱面SAC为侧垂面,它的侧面投影积聚为直线段sa(c),因此n 必在sa(c)上,由n、n 即可求出n。小结1、 掌握棱柱和棱锥的三视图的画法和表面取点方法。2、 棱柱和棱锥表面点的投影作图作业:习题册P28(1)、(2)、(3)、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论